Microsize antibodies for $99 | Learn More >>

Product listing: IQGAP1 Antibody, UniProt ID P46940 #2293 to T-Bet/TBX21 (D6N8B) XP® Rabbit mAb (Alexa Fluor® 647 Conjugate), UniProt ID Q9UL17 #14307

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: IQGAPs are scaffolding proteins involved in mediating cytoskeletal function. They contain multiple protein interaction domains and bind to a growing number of molecules including actin, myosin light chain, calmodulin, E-cadherin, and β-catenin (reviewed in 1). Through their GAP-related domains, they bind the small GTPases Rac1 and cdc42. IQGAPs lack GAP activity, however, and regulate small GTPases by stabilizing their GTP-bound (active) forms (2,3). Research studies have shown that the function and distribution of the IQGAP proteins widely vary. IQGAP1 is ubiquitously expressed and has been found to interact with APC (4) and the CLIP170 complex (5) in response to small GTPases, promoting cell polarization and migration. Additional research studies have suggested that IQGAP1 could play a part in the invasiveness of some cancers (6-8). IQGAP2, which is about 60% identical to IQGAP1, is expressed primarily in liver (3), but lower levels have been detected in the prostate, kidney, thyroid, stomach, and testis (9,10). Research studies have shown that IQGAP2 displays tumor suppressor properties (11). Less is known about the function of IQGAP3, but this protein is present in the lung, brain, small intestine, and testis (9) and is only expressed in proliferating cells (12), suggesting a role in cell growth and division.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Highly conserved and widely expressed plastin proteins comprise a subset of actin-binding proteins that include proteins that promote actin bundling. Three plastins exhibiting differential expression are found in mammals and include L-plastin, T-plastin, and I-plastin. T-plastin (plastin-3) is found in cells of most solid tissues, while I-plastin (plastin-1) is expressed specifically in the kidney, colon, and small intestine (1-3). Research studies have shown that L-plastin (plastin-2) or lymphocyte cytosolic protein 1 (LCP1) is mainly expressed in hematopoietic cells and nonhematopoietic tumors, and increased expression correlates with metastatic progression in colon cancer cell lines (4). Investigators have found that overexpression of LCP1 in premetastatic cancer cell lines induces invasion and loss of E-cadherin expression, which is characteristic of metastatic cancer cell lines (5). LCP1 becomes phosphorylated at Ser5 upon stimulation through the T cell receptor/CD3 complex in association with the CD2 cell adhesion molecule or the CD28 receptor (6). Phosphorylation at Ser5 enhances the ability of LCP1 to bind to F-actin and increases cell motility (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: PDLIM2, also known as Mystique, contains an amino-terminal PDZ domain and a carboxy-terminal LIM domain. PDLIM2 was orginally found to be associated with cytoskeletal proteins in epithelial cells to promote cell attachment and migration (1,2). Subsequent studies have shown that PDLIM2 can also inhibit NF-κB activity by acting as a nuclear ubiquitin E3 ligase for p65 (3). PDLIM2 is suppressed in cancer cell lines by DNA methylation (4,5). Expression of PDLIM2 can inhibit anchorage-independent growth and tumor formation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: INCENP (inner centromere protein antigens 135 kDa, 155 kDa) is a chromosomal passenger protein crucial for multiple events that mediate chromosome separation during mitosis (1). At prophase INCENP is associated with chromatin whereas during prometaphase and metaphase it translocates to the inner centromere (1). Depletion of INCENP results in aberrant chromosome alignment at the metaphase plate, incomplete chromosome separation, and disruption of proper spindle formation and cytokinesis (2). INCENP is part of the chromosomal passenger complex that also contains Aurora B, borealin and survivin (2). Aurora B and INCENP are mutually dependent on each other for proper localization (3), and in Drosophila cells and C.elegans embryos that lack INCENP or survivin, Aurora B cannot organize the kinetochores and the midbody (4,5). Phosphorylation on INCENP by CDK1 on Thr59 and Thr388 leads to the association of INCENP with Plk1, another important regulator of mitotic entry and exit (6). Interaction of INCENP with Plk1 is necessary for recruitment of Plk1 to the kinetochores, and the metaphase to anaphase transition (6). Interactions have also been reported between INCENP and heterochromatin protein 1α (HP1) (7) and β-tubulin (8).

$254
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: G-protein-coupled receptor kinase 3 (GRK3), also known as beta-adrenergic receptor kinase 2 (beta-ARK2), is a member of the GRK family, which phosphorylates the activated form of G-protein-coupled receptors (GPCRs) and initiates the desensitization process of GPCR (1). GRK3 has been implicated in the phosphorylation of GPCRs, enabling their interaction with beta-arrestin, and facilitating their signaling through ERK1/2 phosphorylation (2). More recently, GRK3 was found to play a critical role in tumor progression through stimulation of angiogenesis; furthermore, GRK3 was found to be overexpressed in human prostate cancer, in particular in metastatic tumors (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Grb-associated binder (Gab) family is a family of adaptor proteins recruited by a wide variety of receptor tyrosine kinases (RTKs) such as EGFR, HGFR, insulin receptor, cytokine receptor and B cell antigen receptors. Upon stimulation of RTKs by their cognate ligand, Gab is recruited to the plasma membrane where it is phosphorylated and functions as a scaffold (1-4). Multiple tyrosine phosphorylation sites of Gab1 protein have been identified (5). Phosphorylation of Tyr472 regulates its binding to p85 PI3 kinase (6,7). Phosphorylation of Gab1 at Tyr307, Tyr373 and Tyr407 modulates its association to PLCγ (8). Phosphorylation of Tyr627 and Tyr659 is required for Gab1 binding to and activation of the protein tyrosine phosphatase SHP2 (6,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Notch proteins (Notch1-4) are a family of transmembrane receptors that play important roles in development and the determination of cell fate (1). Mature Notch receptors are processed and assembled as heterodimeric proteins, with each dimer comprised of a large extracellular ligand-binding domain, a single-pass transmembrane domain, and a smaller cytoplasmic subunit (Notch intracellular domain, NICD) (2). Binding of Notch receptors to ligands of the Delta-Serrate-Lag2 (DSL) family triggers heterodimer dissociation, exposing the receptors to proteolytic cleavages; these result in release of the NICD, which translocates to the nucleus and activates transcription of downstream target genes (3,4).

$489
96 assays
1 Kit
The PathScan® Phospho-ALK (Tyr1604) Chemiluminescent Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-ALK (Tyr1604), phospho-EML4-ALK or phospho-NPM-ALK fusion proteins with a chemiluminescent readout. Chemiluminescent ELISAs often have a wider dynamic range and higher sensitivity than conventional chromogenic detection. This chemiluminescent ELISA, which is offered in low volume microplates, shows increased signal and sensitivity while using a smaller sample size. A phospho-ALK (Tyr1604) rabbit antibody has been coated onto the microwells. After incubation with cell lysates, only phospho-ALK (Tyr1604) and phospho-ALK fusion proteins are captured by the coated antibody. Following extensive washing, an ALK mouse mAb is added to detect the captured phospho-ALK (Tyr1604) and phospho-ALK fusion proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. Chemiluminescent reagent is added for signal development. The magnitude of light emission, measured in relative light units (RLU), is proportional to the quantity of phospho-ALK (Tyr1604) or phospho-ALK fusion proteins.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Grb-associated binder (Gab) family is a family of adaptor proteins recruited by a wide variety of receptor tyrosine kinases (RTKs) such as EGFR, HGFR, insulin receptor, cytokine receptor and B cell antigen receptors. Upon stimulation of RTKs by their cognate ligand, Gab is recruited to the plasma membrane where it is phosphorylated and functions as a scaffold (1-4). Multiple tyrosine phosphorylation sites of Gab1 protein have been identified (5). Phosphorylation of Tyr472 regulates its binding to p85 PI3 kinase (6,7). Phosphorylation of Gab1 at Tyr307, Tyr373 and Tyr407 modulates its association to PLCγ (8). Phosphorylation of Tyr627 and Tyr659 is required for Gab1 binding to and activation of the protein tyrosine phosphatase SHP2 (6,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SNIP (SNAP25-interacting protein)/p140Cap (p130Cas-associated protein) is a cytoskeleton-associated protein identified initially in rat as a protein interacting with the brain-specific synaptosome protein SNAP25 (1) and subsequently as interacting with the broadly expressed scaffold protein p130Cas (2). SNAP25, a presynaptic protein implicated in neurotransmitter secretion, membrane fusion and neurite outgrowth, is part of the SNARE complex that includes syntaxin and synaptobrevin/VAMP (3). SNIP-SNAP25 association is mediated by coiled-coil interactions (1). Overexpression of SNIP inhibits calcium-dependent exocytosis in PC12 cells (1). Human and mouse orthologs of SNIP, termed p140Cap, were subsequently identified through association with p130Cas, a substrate of v-Src and v-Crk that is tyrosine-phosphorylated in response to cell adhesion and mitogenic stimuli (2,4,5). Expression of p140Cap was observed in brain, testis and epithelial-rich tissues and may exist in various alternatively spliced, tissue-specific isoforms (2). p140Cap is also tyrosine-phosphoryalated in response to adhesion molecules and EGF treatment (2). Together these studies suggest a role for SNIP/p140Cap in controlling cell spreading, migration and neurosecretion.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Nonmuscle myosin is an actin-based motor protein essential to cell motility, cell division, migration, adhesion, and polarity. The holoenzyme consists of two identical heavy chains and two sets of light chains. The light chains (MLCs) regulate myosin II activity and stability. The heavy chains (NMHCs) are encoded by three genes, MYH9, MYH10, and MYH14, which generate three different nonmuscle myosin II isoforms, IIa, IIb, and IIc, respectively (reviewed in 1). While all three isoforms perform the same enzymatic tasks, binding to and contracting actin filaments coupled to ATP hydrolysis, their cellular functions do not appear to be redundant and they have different subcellular distributions (2-5). The carboxy-terminal tail domain of myosin II is important in isoform-specific subcellular localization (6). Research studies have shown that phosphorylation of myosin IIa at Ser1943 contributes to the regulation of breast cancer cell migration (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The breast cancer susceptibility gene, BRCA1, codes for an E3 ubiquitin ligase that functions in the maintenance of genome stability through regulation of DNA damage response and DNA repair. BRCA1 forms at least three distinct complexes (BRCA1 A, B, and C) with other DNA repair proteins, and these interactions are vital for the regulation of BRCA1 function. The BRCA1-Rap80 complex (BRCA1 A complex), including Rap80, BRCC36, BRCC45, Abraxas, and MERIT40/NBA1, functions in G2/M phase checkpoint control (reviewed in 1,2).MERIT40/NBA1 localizes to sites of DNA damage and is required for the appropriate localization of BRCA1 in response to ionizing radiation, as well as maintenance of the BRCA1 A complex (3,4). Proteomics studies have identified Ser29 as a phosphorylated site on MERIT40/NBA1, and the significance of this phosphorylation is under investigation (5-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Eukaryotic initiation factor 4E (eIF4E) binds to the mRNA cap structure to mediate the initiation of translation (1,2). eIF4E interacts with eIF4G, a scaffold protein that promotes assembly of eIF4E and eIF4A into the eIF4F complex (2). eIF4B is thought to assist the eIF4F complex in translation initiation. Upon activation by mitogenic and/or stress stimuli mediated by Erk and p38 MAPK, Mnk1 phosphorylates eIF4E at Ser209 in vivo (3,4). Two Erk and p38 MAPK phosphorylation sites in mouse Mnk1 (Thr197 and Thr202) are essential for Mnk1 kinase activity (3). The carboxy-terminal region of eIF4G also contains serum-stimulated phosphorylation sites, including Ser1108, Ser1148, and Ser1192 (5). Phosphorylation at these sites is blocked by the PI3 kinase inhibitor LY294002 and by the FRAP/mTOR inhibitor rapamycin.

$305
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The antibody exhibits the same species cross-reactivity as the unconjugated Akt (pan) (40D4) Mouse mAb #2920.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Secretory proteins translocate into the endoplasmic reticulum (ER) during synthesis where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) has two thioredoxin homology domains and catalyzes the formation and isomerization of these disulfide bonds (2). Other ER resident proteins that possess thioredoxin homology domains, including ER stress protein 72 (ERp72), constitute the PDI family (3,4). ERp72 contains three thioredoxin homology domains (3) and plays a role in the formation and isomerization of disulfide bonds (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The extracellular matrix (ECM) is a complex structure of secreted macromolecules surrounding mammalian organs and tissues. Controlled interactions between cells and the ECM are important in proliferation, migration, survival, polarity, and differentiation. Cells contact the ECM primarily through heterodimeric integral membrane proteins called integrins. Integrins connect the ECM to the cytoskeleton, and therefore the cell signaling machinery, through protein complexes called focal adhesions (1).The ILK/PINCH/Parvin (IPP) complex is composed of three highly conserved proteins recruited to sites of ECM contact as pre-assembled structures. The IPP acts at the interface of the integrin/actin connection to regulate formation of focal adhesions and integrin signaling. All three proteins contain multiple protein binding domains allowing them to function as adaptor proteins in the formation of focal adhesions. ILK (integrin-linked kinase) also has a catalytic (protein Ser/Thr kinase) domain, and may or may not function as a kinase in vivo. Roles for IPP proteins outside of the IPP complex have been proposed, including regulation of gene expression (2,3).The parvin family consists of 3 members, α-parvin/actopaxin, β-parvin/affixin, and γ-parvin. α-parvin and β-parvin are expressed ubiquitously, while expression of γ-parvin is restricted to hematopoietic cells (4). α-parvin binds to f-actin both directly and via interaction with the focal adhesion protein paxillin (5). α-parvin regulates cell spreading and motility through interactions with the cofilin kinase TESK1 (6), and with the GTPase activating protein CdGAP (7). Phosphorylation of α-parvin during mitosis may have a role in the regulation of actin dynamics during the cell cycle (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Structural maintenance of chromosomes 1 (SMC1) protein is a chromosomal protein member of the cohesin complex that enables sister chromatid cohesion and plays a role in DNA repair (1,2). ATM/NBS1-dependent phosphorylation of SMC1 occurs at Ser957 and Ser966 in response to ionizing radiation (IR) as part of the intra-S-phase DNA damage checkpoint (3). SMC1 phosphorylation is ATM-independent in cells subjected to other forms of DNA damage, including UV light and hydroxyurea treatment (4). While phosphorylation of SMC1 is required for activation of the IR-induced intra-S-phase checkpoint, the precise mechanism is not well understood and may involve a conformational change that affects SMC1-SMC3 interaction (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$364
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Met (Tyr1234/1235) (D26) XP® Rabbit mAb #3077.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Met, a high affinity tyrosine kinase receptor for hepatocyte growth factor (HGF, also known as scatter factor) is a disulfide-linked heterodimer made of 45 kDa α- and 145 kDa β-subunits (1,2). The α-subunit and the amino-terminal region of the β-subunit form the extracellular domain. The remainder of the β-chain spans the plasma membrane and contains a cytoplasmic region with tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines, which recruit several downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (3). These fundamental events are important for all of the biological functions involving Met kinase activity. The addition of a phosphate at cytoplasmic Tyr1003 is essential for Met protein ubiquitination and degradation (4). Phosphorylation at Tyr1234/1235 in the Met kinase domain is critical for kinase activation. Phosphorylation at Tyr1349 in the Met cytoplasmic domain provides a direct binding site for Gab1 (5). Research studies have shown that altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast. Thus, investigators have concluded that Met is an attractive potential cancer therapeutic and diagnostic target (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for immunofluorescent analysis in monkey cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Myc-Tag (9B11) Mouse mAb #2276.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: Many growth factors and hormones induce the phosphoinositide 3-kinase signaling pathway, which results in the activation of downstream effector proteins such as the serine/threonine kinase Akt (1,2). One known Akt substrate is a 40 kDa, proline-rich protein (PRAS40) that binds to 14-3-3 proteins (2). PRAS40 also binds mTOR to transduce Akt signals to the mTOR complex. Inhibition of mTOR signaling stimulates PRAS40 binding to mTOR, which in turn inhibits mTOR activity (3). PRAS40 interacts with raptor in mTOR complex 1 (mTORC1) in insulin-deprived cells and inhibits the activation of the mTORC1 pathway mediated by the cell cycle protein Rheb. Phosphorylation of PRAS40 by Akt at Thr246 relieves PRAS40 inhibition of mTORC1 (4). mTORC1 in turn phosphorylates PRAS40 at Ser183 (5).

$262
3 nmol
300 µl
SignalSilence® PERK siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PERK expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein kinase-like endoplasmic reticulum kinase (PERK) is an eIF2α kinase and transmembrane protein resident in the endoplasmic reticulum (ER) membrane that couples ER stress signals to translation inhibition (1-3). ER stress increases the activity of PERK, which then phosphorylates eIF2α to promote reduced translation. Research studies have demonstrated that PERK-deficient mice have defects in pancreatic β cells several weeks after birth, suggesting a role for PERK-mediated translational control in protecting secretory cells from ER stress (4). PERK activation during ER stress correlates with autophosphorylation of its cytoplasmic kinase domain (1-3). Phosphorylation of PERK at Thr980 serves as a marker for its activation status.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: VCP-interacting membrane protein (VIMP, selenoprotein S) is a putative reductase and endoplasmic reticulum (ER)-resident protein involved in the ER-associated degradation (ERAD) pathway (1,2). Research studies indicate that VIMP may play a protective role against inflammation and reduce ER-stress (3). The VIMP protein is a single-pass, transmembrane protein that recruits the cytosolic p97/VCP AAA-ATPase and its cofactors, UFD1 and NPL4, to the ER membrane (4). An ER membrane complex containing Derlin-1 and VIMP forms a critical node in the ERAD machinery and links substrate recognition in the ER lumen with the retrotranslocation function of the p97/VCP AAA-ATPase in the cytosol (1,4). Polymorphisms in the corresponding VIMP gene are associated with spontaneous preterm births and cardiovascular disease risk (5,6) while other studies do not support a correspondence between VIMP polymorphisms and inflammatory disorders (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The gene encoding metastasis-associated in colon cancer-1 (MACC1) was identified based on its overexpression in metastatic colon carcinoma (1), and was later shown to be overexpressed in multiple human cancers, including hepatocellular carcinoma, gastric cancer, head and neck cancer, and breast cancer (2-5). MACC1 regulates HGF/MET and β-catenin signaling, resulting in increased proliferation, migration and invasion, and initiation of the epithelial-mesenchymal transition (EMT) (2). Researchers have shown that MACC1 can be used as a prognostic indicator in solid tumors, and that it has potential as a therapeutic target (6).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated T-bet/TBX21 (D6N8B) XP® Rabbit mAb #13232.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: The T-box gene family consists of transcription factors characterized by a related DNA-binding domain (T-box) of approximately 200 amino acids (1,2). The T-box genes exhibit diverse temporal and spatial patterns in the developing embryo. Studies have demonstrated members of this family play crucial roles during embryogenesis in a wide range of organisms by regulating cell fate decisions to establish the early body plan and to regulate later processes underlying organogenesis (3-5). Mutations in T-box genes are associated with many developmental defects (6). Recent studies also indicate potential roles in cancer by members of T-box family (7-9).