Microsize antibodies for $99 | Learn More >>

Product listing: Oct-4A (C30A3) Rabbit mAb (Alexa Fluor® 555 Conjugate), UniProt ID Q01860 #4439 to PPP2R5D (H5D12) Mouse mAb, UniProt ID Q14738 #5687

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for immunofluorescent analysis in monkey cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Myc-Tag (9B11) Mouse mAb #2276.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: Many growth factors and hormones induce the phosphoinositide 3-kinase signaling pathway, which results in the activation of downstream effector proteins such as the serine/threonine kinase Akt (1,2). One known Akt substrate is a 40 kDa, proline-rich protein (PRAS40) that binds to 14-3-3 proteins (2). PRAS40 also binds mTOR to transduce Akt signals to the mTOR complex. Inhibition of mTOR signaling stimulates PRAS40 binding to mTOR, which in turn inhibits mTOR activity (3). PRAS40 interacts with raptor in mTOR complex 1 (mTORC1) in insulin-deprived cells and inhibits the activation of the mTORC1 pathway mediated by the cell cycle protein Rheb. Phosphorylation of PRAS40 by Akt at Thr246 relieves PRAS40 inhibition of mTORC1 (4). mTORC1 in turn phosphorylates PRAS40 at Ser183 (5).

$262
3 nmol
300 µl
SignalSilence® PERK siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PERK expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein kinase-like endoplasmic reticulum kinase (PERK) is an eIF2α kinase and transmembrane protein resident in the endoplasmic reticulum (ER) membrane that couples ER stress signals to translation inhibition (1-3). ER stress increases the activity of PERK, which then phosphorylates eIF2α to promote reduced translation. Research studies have demonstrated that PERK-deficient mice have defects in pancreatic β cells several weeks after birth, suggesting a role for PERK-mediated translational control in protecting secretory cells from ER stress (4). PERK activation during ER stress correlates with autophosphorylation of its cytoplasmic kinase domain (1-3). Phosphorylation of PERK at Thr980 serves as a marker for its activation status.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: VCP-interacting membrane protein (VIMP, selenoprotein S) is a putative reductase and endoplasmic reticulum (ER)-resident protein involved in the ER-associated degradation (ERAD) pathway (1,2). Research studies indicate that VIMP may play a protective role against inflammation and reduce ER-stress (3). The VIMP protein is a single-pass, transmembrane protein that recruits the cytosolic p97/VCP AAA-ATPase and its cofactors, UFD1 and NPL4, to the ER membrane (4). An ER membrane complex containing Derlin-1 and VIMP forms a critical node in the ERAD machinery and links substrate recognition in the ER lumen with the retrotranslocation function of the p97/VCP AAA-ATPase in the cytosol (1,4). Polymorphisms in the corresponding VIMP gene are associated with spontaneous preterm births and cardiovascular disease risk (5,6) while other studies do not support a correspondence between VIMP polymorphisms and inflammatory disorders (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The gene encoding metastasis-associated in colon cancer-1 (MACC1) was identified based on its overexpression in metastatic colon carcinoma (1), and was later shown to be overexpressed in multiple human cancers, including hepatocellular carcinoma, gastric cancer, head and neck cancer, and breast cancer (2-5). MACC1 regulates HGF/MET and β-catenin signaling, resulting in increased proliferation, migration and invasion, and initiation of the epithelial-mesenchymal transition (EMT) (2). Researchers have shown that MACC1 can be used as a prognostic indicator in solid tumors, and that it has potential as a therapeutic target (6).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated T-bet/TBX21 (D6N8B) XP® Rabbit mAb #13232.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: The T-box gene family consists of transcription factors characterized by a related DNA-binding domain (T-box) of approximately 200 amino acids (1,2). The T-box genes exhibit diverse temporal and spatial patterns in the developing embryo. Studies have demonstrated members of this family play crucial roles during embryogenesis in a wide range of organisms by regulating cell fate decisions to establish the early body plan and to regulate later processes underlying organogenesis (3-5). Mutations in T-box genes are associated with many developmental defects (6). Recent studies also indicate potential roles in cancer by members of T-box family (7-9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in rat brain. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Neurofilament-L (C28E10) Rabbit mAb #2837.
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The cytoskeleton consists of three types of cytosolic fibers: actin microfilaments, intermediate filaments, and microtubules. Neurofilaments are the major intermediate filaments found in neurons and consist of light (NFL), medium (NFM), and heavy (NFH) subunits (1). Similar in structure to other intermediate filament proteins, neurofilaments have a globular amino-terminal head, a central α-helical rod domain, and a carboxy-terminal tail. A heterotetrameric unit (NFL-NFM and NFL-NFH) forms a protofilament, with eight protofilaments comprising the typical 10 nm intermediate filament (2). While neurofilaments are critical for radial axon growth and determine axon caliber, microtubules are involved in axon elongation. PKA phosphorylates the head domain of NFL and NFM to inhibit neurofilament assembly (3,4). Research studies have shown neurofilament accumulations in many human neurological disorders including Parkinson's disease (in Lewy bodies along with α-synuclein), Alzheimer's disease, Charcot-Marie-Tooth disease, and Amyotrophic Lateral Sclerosis (ALS) (1).

$489
96 assays
1 Kit
The PathScan® Acetyl-Histone H4 (Lys12) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of histone H4 when acetylated at lysine 12. A histone H4 mouse antibody has been coated onto the microwells. After incubation with cell lysates, histone H4 protein (acetylated and non-acetylated) is captured by the coated antibody. Following extensive washing, Acetyl-histone H4 (Lys12) rabbit antibody is added to detect acetylated Lys12 on the histone H4 protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of histone H4 acetylated at Lys12.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: Notch proteins (Notch1-4) are a family of transmembrane receptors that play important roles in development and the determination of cell fate (1). Mature Notch receptors are processed and assembled as heterodimeric proteins, with each dimer comprised of a large extracellular ligand-binding domain, a single-pass transmembrane domain, and a smaller cytoplasmic subunit (Notch intracellular domain, NICD) (2). Binding of Notch receptors to ligands of the Delta-Serrate-Lag2 (DSL) family triggers heterodimer dissociation, exposing the receptors to proteolytic cleavages; these result in release of the NICD, which translocates to the nucleus and activates transcription of downstream target genes (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The initiation of DNA replication in mammalian cells is a highly coordinated process that ensures duplication of the genome only once per cell division cycle. Origins of replication are dispersed throughout the genome and their activities are regulated via the sequential binding of pre-replication and replication factors. The origin recognition complex (ORC) is thought to bind to chromatin throughout the cell cycle (1,2). The pre-replication complex (Pre-RC) forms in late mitosis/early G1 phase with the binding of CDT1 and cdc6 to the origin, which allows binding of the heterohexameric MCM2-7 complex. The MCM complex is thought to be the replicative helicase and formation of the Pre-RC is referred to as chromatin licensing. Subsequent initiation of DNA replication requires the activation of the S-phase promoting kinases cdk2 and cdc7. Cdc7 phosphorylates MCM proteins bound to chromatin and, in conjunction with CDT1, recruits the replication factor cdc45 (3-5). Cdc45 is required for formation of pre-initiation complexes at the G1/S transition and for activation of replication origins. The level of cdc45 protein expression is associated with the proliferative status of the cell or tissue. Terminally differentiated and senescent cells lack cdc45 and highly proliferative cell lines express high levels of cdc45 (6).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: CD151 (PETA-3, SFA-1) is a member of the evolutionarily conserved tetraspanin family of multipass glycoproteins (TM4SF), highlighted by four transmembrane domains, two extracellular loops, and N/C-termini that reside within the cytoplasm. Identified as the first member of the tetraspanin family to be implicated in tumorigenesis, research studies have demonstrated that CD151 participates in tumor neovascularization (1), tumor cell cell invasion (2), and cell adhesion (3). Furthermore, a positive correlation exists between CD151 expression levels and poor prognosis for tumors of the lung (4), kidney (5), and prostate (6). CD151 is localized predominantly to the plasma membrane and research studies have demonstrated that CD151 exerts its pro-tumorigenic effects, in part, through the modulation of laminin-binding integrins (7-9) and oncogenic receptor tyrosine kinases, such as c-Met (10,11) and EGFR (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: HSP70 and HSP90 are molecular chaperones expressed constitutively under normal conditions to maintain protein homeostasis and are induced upon environmental stress (1). Both HSP70 and HSP90 are able to interact with unfolded proteins to prevent irreversible aggregation and catalyze the refolding of their substrates in an ATP- and co-chaperone-dependent manner (1). HSP70 has a broad range of substrates including newly synthesized and denatured proteins, while HSP90 tends to have a more limited subset of substrates, most of which are signaling molecules. HSP70 and HSP90 often function collaboratively in a multi-chaperone system, which requires a minimal set of co-chaperones: HSP40, Hop, and p23 (2,3). The co-chaperones either regulate the intrinsic ATPase activity of the chaperones or recruit chaperones to specific substrates or subcellular compartments (1,4). When the ubiquitin ligase CHIP associates with the HSP70/HSP90 complex as a cofactor, the unfolded substrates are subjected to degradation by the proteasome (4). The biological functions of HSP70/HSP90 extend beyond their chaperone activity. They are essential for the maturation and inactivation of nuclear hormones and other signaling molecules (1,3). They also play a role in vesicle formation and protein trafficking (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: FYVE-CENT (ZFYVE26) contains an FYVE zinc finger domain characterized by conserved R(R/RK) and HHCRxCG motifs (1). Phosphatidylinositol 3 phosphate binds to FYVE-CENT via the FYVE domain and this binding is crucial in phosphoinositide (PtdIns3P)-regulated cytokinesis (1-3). Research evidence suggests that during cytokinesis, FYVE-CENT directly interacts with TTC19 and is recruited to the midbody by the kinesin protein KIF13A (4). FYVE-CENT may also be involved in the tumor suppressor function of Beclin-1 (5). Researchers have linked the defects in FYVE-CENT to hereditary spastic paraplegia, a condition characterized by deterioration of the corpus callosum of the brain (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Brain-specific kinase 1 (BRSK1; SAD-B) and Brain-specific kinase 2 (BRSK2; SAD-A) are serine/threonine kinases closely related to AMPK. LKB1 phosphorylates Thr189 in the T-loop of BRSK1 and Thr174 in the T-loop of BRSK2, resulting in activation of the kinases (1). BRSK1 localizes to synaptic vesicles in the hippocampus and cerebellum, together with the active zone proteins Bassoon and CAST, and BRSK1 phoshorylates the active zone protein RIM1 (2). An alternatively spliced from of BRSK1 displays unique activity during the cell cycle, phosphorylating Ser131 of γ-tubulin and controling centrosome duplication (3). Neuronal polarization, including axon formation, is fundamental for normal brain development. BRSK1 -/- and BRSK2 -/- mice have defects in neuronal polarity and impaired corticogenesis (4). Knockdown of BRSK1 and BRSK2 in vitro diminishes axonal growth (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Interferons (IFNs) appear both locally and systematically early after viral infection and participate in limiting the spread of infection. They also affect cell differentiation, growth, surface antigen expression and immunoregulation (1). There are three naturally occurring interferons: α, β and γ. IFN-α is derived from lymphoblastic tissue and has a number of therapeutic applications in the treatment of various human cancers and diseases of viral origin. Recombinant IFN-α from both natural and synthetic genes binds to a common cell surface receptor and induces antiviral activity in a variety of cell lines. When binding to discrete cell surface receptors on target cells, IFN-α induces rapid changes in Jak/Stat phosphorylation, which initiates the Jak/Stat signaling pathway (2). IFN-α signaling also involves production of DAG without an increased intracellular free calcium concentration and the subsequent activation of calcium-independent isoforms of PKC (β and ε) (3). All IFN-α signaling pathways lead to final alterations of gene expression, which mediate their pleiotropic biologic activities.

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated LC3A/B (D3U4C) XP® Rabbit mAb #12741.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation, but it has also been associated with a number of physiological processes including development, differentiation, neurodegenerative diseases, infection, and cancer (3). Autophagy marker Light Chain 3 (LC3) was originally identified as a subunit of microtubule-associated proteins 1A and 1B (termed MAP1LC3) (4) and subsequently found to contain similarity to the yeast protein Apg8/Aut7/Cvt5 critical for autophagy (5). Three human LC3 isoforms (LC3A, LC3B, and LC3C) undergo post-translational modifications during autophagy (6-9). Cleavage of LC3 at the carboxy terminus immediately following synthesis yields the cytosolic LC3-I form. During autophagy, LC3-I is converted to LC3-II through lipidation by a ubiquitin-like system involving Atg7 and Atg3 that allows for LC3 to become associated with autophagic vesicles (6-10). The presence of LC3 in autophagosomes and the conversion of LC3 to the lower migrating form, LC3-II, have been used as indicators of autophagy (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: PATL1/PAT1b is the human homolog of the evolutionarily conserved Pat1/Mrt1 protein, which was first identified in Saccharomyces cerevisiae (1,2). This protein is a critical component of the RNA decay machinery in the cytoplasmic processing bodies (P-bodies), localized foci of mRNA silencing and degradation (3). PATL1/PAT1b interacts with many key components of the RNA decay machinery. These include the 5’ decapping proteins DDX6/RCK, DCP1, DCP2, EDC4, and the LSm1–7 ring (3,4) as well as the 3’ deadenylation complex of CAF1-CCR4-NOT1 (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CUTL1 (Cut-like 1), also known as CUX1 (Cut homeobox 1) (CUX1), is a transcription factor that has been implicated in many cellular processes in different tissues, such as cell migration, neuronal differentiation, and DNA repair (1-5). CUTL1 expression and activities are altered in cancer. Research studies have shown the CUTL1 gene to be a frequent target of loss-of-heterozygocity in various cancers (6,7). On the other hand, CUTL1 expression is elevated in many cancers and is associated with shorter disease-free survival (8). These accumulating evidence suggest that decreased CUTL1 expression promote tumor initiation and increased CUTL1 expression facilitates tumor progression (9). While full-length CUTL1 is about 200 kDa (p200), short forms p110 and p75 can also be generated by proteolytic processing and alternative transcription initiation site, respectively (10, 11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Epithelial Protein Lost in Neoplasm (EPLIN) is an actin-binding protein that regulates actin filament dynamics and cross-linking (1). Alpha and beta isoforms are generated from alternate promoters, with the EPLIN-β isoform representing the full-length protein and the EPLIN-α isoform lacking the amino-terminal 160 amino acids (2). Increased expression of EPLIN protein results in more abundant and larger actin stress fibers due to stabilizing of cross-links and inhibition of actin depolymerization. EPLIN protein inhibits Rac1-promoted membrane ruffling and Arp2/3-associated actin filament branching (1).Research studies demonstrate reduced EPLIN-α expression in tumor tissues, and correlate this reduction with increased invasiveness and poor clinical outcomes (3). The EPLIN protein is an important negative regulator of the epithelial-mesenchymal transition (EMT)(4). While EMT is a critical process during normal embryonic development, dysregulation in transformed cells is a key step in the transition to metastasis (5).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb #9751.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat, S. cerevisiae

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: TRXR1 (thioredoxin reductase 1) is a selenocysteine-containing protein that is involved in redox homeostasis (1-6). Its canonical target is thioredoxin, another redox protein (1). Together, they are involved in many functions such as antioxidant regulation (3-6), cell proliferation (2,3,5), DNA replication (2,3), and transcription (3,5). TRXR1 is also capable of reducing a wide array of cellular proteins (1,3). Selenium deficiency, either by diet modification (2,6) or introduction of methylmercury (4), hinders proper expression and function of TRXR1. It is possible that this effect, which results in a higher oxidative state, is a result of the selenocysteine codon (UGA) being read as a STOP codon in the absence of adequate selenium (4). The functions of TRXR1 in cell proliferation and antioxidant defense make it a potential therapeutic target.

$262
3 nmol
300 µl
SignalSilence® AMPKα2 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit AMPKα2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1).

$489
96 assays
1 Kit
The PathScan® Acetylated p53 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of acetylated lysines on p53. A p53 Mouse monoclonal Antibody has been coated onto the microwells. After incubation with cell lysates, the p53 is captured by the coated antibody. Following extensive washing, Acetylated-Lysine Rabbit monoclonal Antibody is added to detect the acetylated lysines on the p53 protein. Anti-rabbit IgG, HRP linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of acetylated p53.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey, Mouse

Background: The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). p53 is phosphorylated at multiple sites in vivo and by several different protein kinases in vitro (2,3). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (4). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (5,6). p53 can be phosphorylated by ATM, ATR, and DNA-PK at Ser15 and Ser37. Phosphorylation impairs the ability of MDM2 to bind p53, promoting both the accumulation and activation of p53 in response to DNA damage (4,7). Chk2 and Chk1 can phosphorylate p53 at Ser20, enhancing its tetramerization, stability, and activity (8,9). p53 is phosphorylated at Ser392 in vivo (10,11) and by CAK in vitro (11). Phosphorylation of p53 at Ser392 is increased in human tumors (12) and has been reported to influence the growth suppressor function, DNA binding, and transcriptional activation of p53 (10,13,14). p53 is phosphorylated at Ser6 and Ser9 by CK1δ and CK1ε both in vitro and in vivo (13,15). Phosphorylation of p53 at Ser46 regulates the ability of p53 to induce apoptosis (16). Acetylation of p53 is mediated by p300 and CBP acetyltransferases. Inhibition of deacetylation suppressing MDM2 from recruiting HDAC1 complex by p19 (ARF) stabilizes p53. Acetylation appears to play a positive role in the accumulation of p53 protein in stress response (17). Following DNA damage, human p53 becomes acetylated at Lys382 (Lys379 in mouse) in vivo to enhance p53-DNA binding (18). Deacetylation of p53 occurs through interaction with the SIRT1 protein, a deacetylase that may be involved in cellular aging and the DNA damage response (19).

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase with two different complexes. One complex contains mTOR, GβL and raptor, which is a target of rapamycin. The other complex, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTOR-rictor complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). This complex has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Oligophrenin-1 is a RhoGTPase-activating protein encoded by the gene OPHN1 (1). Oligophrenin-1 is composed of an N-terminal BAR domain, a pleckstrin homology domain, a central RhoGAP domain, and three putative C-terminal SH3-binding sites. Oligophrenin-1 plays a role in membrane signaling through interaction of its BAR domain with curved membranes, binding of its pleckstrin homology domain with membrane phosphoinositides, and interaction of the SH3-binding sites with adaptor proteins (1-3). Oligophrenin-1 regulates synaptic vesicle endocytosis (3) and plays an important role in dendritic spine morphogenesis (4). Furthermore, by interacting with the transcription factor Rev-erbα and protecting it from degradation, Oligophrenin-1 participates in the regulation of the circadian rhythm in the hippocampus (5). Research studies have demonstrated an involvement of Oligophrenin-1 in X-linked mental retardation (1).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated TRAIL (C92B9) Rabbit mAb #3219.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also referred to as Apo2 ligand, first identified based on its sequence homology to TNF and Fas/Apo ligand is a member of the TNF family of cytokines and either exists as a type II membrane or soluble protein (1,2). TRAIL induces apoptosis in a variety of transformed cell lines and plays a role in anti-tumor and anti-viral immune surveillance (3). TRAIL signals via binding with death receptors DR4 (TRAIL-R1) (4) and DR5 (TRAIL-R2) (5-8) which can trigger apoptosis as well as NF-κB activation (7,9). Death domains on these receptors leads to the recruitment of a death-induced signaling complex (DISC) leading to caspase-8 and subsequent caspase-3 activation. In addition, TRAIL binds with decoy receptors DcR1 (TRAIL-R3) (10-13) and DcR2 (TRAIL-R4, TRUNDD) (14-15) which lack the functional cytoplasmic death domain antagonizing TRAIL-induced apoptosis. Osteoprotegerin (OPG) has also been identified as receptor capable of inhibiting TRAIL-induced apoptosis (16). The selectivity of soluble TRAIL at triggering apoptosis in transformed cells as compared to normal cells has led to its investigation as a potential cancer therapeutic (17-18).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TTK (Mps1, PYT) is a cell cycle regulated dual specificity kinase present in rapidly proliferating tissues and cell lines (1-3). TTK localizes to kinetochores and centromeres and is an essential component of the mitotic spindle checkpoint as well as centrosome duplication (4-6). The mitotic checkpoint inhibits entry into anaphase until all chromosomes are attached to the spindle; inhibition of this process leads to genomic instability and tumorigenesis. Phosphorylation of the BLM helicase at Ser144 by TTK maintains chromosome stability during mitosis (7). Small molecule inhibitors of TTK can block the spindle checkpoint response, thereby making TTK a potential therapeutic target (8,9).TTK also participates in the DNA damage response by directly phosphorylating and activating the cell cycle checkpoint kinase Chk2 at Thr68. Two targets phosphorylated by Chk2 are the cell cycle phosphatase cdc25 and the transcription factor p53. Inactivation of cdc25 phosphatase results in the accumulation of inactive cyclin B and cell cycle arrest following DNA damage. Phosphorylation of p53 by active Chk2 stabilizes the transcription factor and promotes cell cycle arrest and apoptosis in response to DNA damage (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein Phosphatase 2A subunit isoform R5-δ (PPP2R5D) belongs to the R5/B'/B56 family of the regulatory subunit B of serine/threonine phosphatase 2A (1). PPP2R5D (B-δ) is structurally related to the other components of subunit B, B-α. PPP2R5D lacks the WD-40 repeats that are important for protein-protein interaction (1-2). Structural differences may contribute to distinct down stream effects (3) and directing PP2A nuclear localization (4). Current evidence suggests that in contrast to B-α, PPP2R5D modulates the TGF-β/Actividin/Nodal signaling pathways by restricting the downstream activities of the type I TGF-β receptors, ALK4, and ALK5 (3)