Microsize antibodies for $99 | Learn More >>

Product listing: Lck (V49) Antibody, UniProt ID P06239 #2714 to Sec61A1 (D4K2Z) Rabbit mAb, UniProt ID P61619 #14867

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: YTH domain-containing protein 1 (YTHDC1) and YTH domain-containing protein 2 (YTHDC2) both belong to a family of proteins that bind to RNA. YTHDC1 and YTHDC2 both recognize and bind to N6-methyladenosine(m6A)-containing RNAs; binding is mediated through the YTH domains (1-3). m6A is a modification that is present at internal sites of mRNAs and some non-coding RNAs and plays a role in regulating mRNA splicing, processing, and stability. YTHDC1, also known as splicing factor YT521, regulates alternative splicing by functioning as a key regulator of exon-inclusion or exon-skipping. YTHDC1 promotes exon-inclusion by recruiting pre-mRNA splicing factor SRSF3 to regions containing m6A, while repressing exon-skipping by blocking SRSF10 binding to these same regions (2). Increased expression of YTHDC1 promotes malignant endometrial carcinoma (EC) through alternative splicing of vascular endothelial growth factor A (VEGF-A), resulting in an increase in VEGF-165 isoform and increased EC cell invasion (4). YTHDC2 functions to enhance the translation efficiency of target mRNAs and may play a role in spermatogenesis (5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated TET2 (D6C7K) Rabbit mAb (Mouse Specific) #36449.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: Methylation of DNA at cytosine residues is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting, and mammalian development (1,2). 5-methylcytosine is a repressive epigenetic mark established de novo by two enzymes, DNMT3a and DNMT3b, and is maintained by DNMT1 (3, 4). 5-methylcytosine was originally thought to be passively depleted during DNA replication. However, subsequent studies have shown that Ten-Eleven Translocation (TET) proteins TET1, TET2, and TET3 can catalyze the oxidation of methylated cytosine to 5-hydroxymethylcytosine (5-hmC) (5). Additionally, TET proteins can further oxidize 5-hmC to form 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of which are excised by thymine-DNA glycosylase (TDG), effectively linking cytosine oxidation to the base excision repair pathway and supporting active cytosine demethylation (6,7). TET2 is the most frequently mutated gene in myeloid dysplastic syndrome (MDS), a dysplasia of myeloid, megakaryocytic, and/or erythroid cell lineages, of which 30% progress to acute myeloid leukemia (AML) (8, 9). It is also mutated in diffuse large B-cell lymphoma (10). TET2 protein expression is often reduced in solid tumors such as prostate cancer, melanoma, and oral squamous cell carcinoma (11-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The membrane protein syntaxin 5 (STX5) is a key component of soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes that regulate cellular protein transport, vesicle docking, and membrane fusion (1). Syntaxin 5 protein is found as a 42 kDa ("long") protein localized to the Golgi complex and endoplasmic reticulum, and a “short” 35 kDa isoform localized primarily to the Golgi (2,3). Formation of the syntaxin 5 SNARE complex, which also includes proteins Sec22B, Bet1, GOSR1, GOSR2, and Ykt6, allows for regulation of ER-to-Golgi transport, intra-Golgi transport, and endosome-to-Golgi retrograde transport (4-6). Research studies indicate that the syntaxin 5 SNARE complex also plays an essential role in autophagy following autophagosome formation. Intracellular protein transport mediated by the syntaxin 5 complex is required for transport and localized activity of lysosomal proteases. The experimental reduction or deletion of syntaxin 5 complex components results in non-functional lysosomes and accumulation of autophagosomes (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic translation initiation factor 1 (eIF1) was first purified as a factor stimulating binding of Met-tRNA and mRNA to the ribosome (1,2). eIF1 is essential for growth in yeast and two classes of mutations in yeast eIF1 indicate a role for this protein in ensuring accurate translation initiation site selection (3). It has been demonstrated that eIF1 expression is stress-inducible, suggesting that modulation of translation initiation occurs during cellular stress (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The sodium-dependent phosphate transport protein 2B (NaPi-2b, SLC34A2) is a sodium dependent inorganic phosphate (Pi) transporter that regulates phosphate homeostasis in various organs, including the small intestine, lung, liver, and testis (1). In the small intestine, NaPi-2b localizes to the intestinal brush border membrane to mediate Pi reabsorption (2). In the lung, NaPi-2b is expressed in the apical membrane of type II alveolar cells and is involved in the synthesis of surfactant (3). Mutations in the corresponding SLC34A2 gene causes pulmonary alveolar microlithiasis, a rare autosomal recessive disorder characterized by the deposition of calcium phosphate microliths throughout the lungs (4). Research studies show aberrant expression of NaPi-2b in various type of cancer, including ovarian, breast, and lung cancer (5). Chromosomal rearrangements involving SLC34A2-ROS1 are seen in gastric carcinoma and non-small cell lung cancer and result in the formation of a SLC34A2-ROS1 chimeric protein that retains a constitutive kinase activity (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Lysyl-tRNA synthetase (LysRS) is a multifunctional protein that has both regular and mitochondrial forms. The regular form of LysRS belongs to a family of aminoacyl-tRNA synthetases (aaRSs) that catalyze amino acid attachment to its cognate tRNA. In mammalian systems, LysRS forms a multisystem complex (MSC) with several other aaRSs (1-3). In addition to its conventional function, LysRS regulates diadenosine tetraphosphate (Ap4A) production (3). Cellular and metabolic stress increases the level of Ap4A, which functions as a cellular alarm system (3-5). Following FcεRI aggregation in mast cells, MAPK/Erk kinase (MEK) phosphorylates LysRS at Ser207 (5). Serine phosphorylation of LysRS leads to the release of LysRS from MSC and its translocation into the nucleus (5), as well as increased synthesis of Ap4A (5,6). LysRS binds to microphthalmia transcription factor (MITF) and MITF repressor Hint-1. Upon binding of Ap4A, Hint-1 is released from the complex that in turn allows the transcription of MITF-responsive genes (5-7). LysRS is also involved in HIV viral assembly through incorporation into HIV-1 virions via an interaction with HIV-1 Gag (8). Research studies have shown that in the presence of mutant Cu,Zn-superoxide dismutase (SOD1), mitochondrial LysRS tends to be misfolded and degraded by proteasomal degradation, contributing to mitochondrial dysfunction in Amyotrophic Lateral Sclerosis (ALS) (9). LysRS is also secreted and has cytokine-like functions (10). LysRS was also found to be an autoantigen in autoimmune responses (11).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: CD64 (FcgammaRI), CD32 (FcgammaRII) and CD16 (FcgammaRIII) are three classes of the immunoglobulin superfamily. CD64 has a high affinity for IgG with three Ig-like domains while CD32 and CD16 have low affinities with two Ig-like domains. Two genes encode CD16-A and CD16-B resulting only in a 6 amino acid difference in their ectodomains. However, CD16-A has a transmembrane anchor versus CD16-B, which has a glycosylphosphatidylinositol (1). CD64, CD32 and CD16 are membrane glycoproteins that are expressed by all immunologically active cells and trigger various immune functions (activate B cells, phagocytosis, antibody-dependent cellular cytotoxicity, immune complex clearance and enhancement of antigen presentation) (2). CD16 cross-linking induces tyrosine phosphorylation (Tyr394) of Lck in NK cells (3). CD32 has tyrosine-based activation motifs in the cytoplasmic domain in contrast to CD16, which associates with molecules possessing these motifs (1).

$262
3 nmol
300 µl
SignalSilence® Bmi1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Bmi1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The polycomb group (PcG) of proteins contributes to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. This histone methyl-transferase activity requires the Ezh2, Eed, and Suz12 subunits of the complex (5). Histone H3 methylation at Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (6). Bmi1 is a component of the PRC1 complex, which together with Ring1 strongly enhances the E3 ubiquitin ligase activity of the Ring2 catalytic subunit (7). Bmi1 plays an important role in the regulation of cell proliferation and senescence through repression of the p16 INK4A and p19 ARF genes and is required for maintenance of adult hematopoietic and neural stem cells (3,4,8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Tissue Factor (TF)/CD142 (Coagulation factor III/Thromboplastin) is a type-I transmembrane glycoprotein that serves as the cell surface receptor and cofactor for blood coagulation factors VII and VIIa, and thus plays a central role in hemostasis and thrombosis (1). The TF:VIIa receptor-ligand complex is widely recognized as the initiator of the extrinsic blood coagulation protease cascade, which ultimately leads to the generation of fibrin and thrombin (1). A member of the type-II cytokine receptor superfamily, TF has also been shown to engage the PI3K (2) and MAPK (3) signaling cascades upon binding to factor VIIa in order to drive cellular responses such as cell migration, growth, and proliferation. Although the function of TF under physiologic conditions is to coordinate blood clotting in response to tissue damage, TF is implicated in pathologic conditions such as tumorigenesis. Indeed, TF is aberrantly expressed in colorectal cancer, breast cancer, pancreatic cancer, and glioblastoma multiforme (4). It has been shown to promote tumor angiogenesis, tumor growth, metastasis, and venous thrombosis (5). Given that TF overexpression is associated with numerous types of solid tumors, it has garnered much attention as a potential therapeutic target.

$262
3 nmol
300 µl
SignalSilence® Akt2 siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Akt2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Lamins are nuclear membrane structural components that are important in maintaining normal cell functions such as cell cycle control, DNA replication, and chromatin organization (1-3). Lamin A/C is cleaved by caspase-6 and serves as a marker for caspase-6 activation. During apoptosis, lamin A/C is specifically cleaved into a large (41-50 kDa) and a small (28 kDa) fragment (3,4). The cleavage of lamins results in nuclear dysregulation and cell death (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Leucyl-tRNA Synthetase (LARS) is a leucine sensor critical for the activation of mTORC1 (1). mTORC1 kinase complex is an important component in the regulation of cell growth (2,3). Its activity is modulated by energy levels, growth factors, and amino acids (4,5). The four related GTPases, RagA, RagB, RagC, and RagD, have been shown to interact with raptor in mTORC1 (2,3). These interactions are both necessary and sufficient for mTORC1 activation in response to amino acid signals (2,3). LARS functions as a GTPase-activating protein (GAP) and interacts directly with RagD GTPase (1). The role of LARS in leucine sensing is not related to its tRNA charging activity (1).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Phosphatidylcholine-specific phospholipase D (PLD) hydrolyzes phosphatidylcholine (PC) to produce choline and phosphatidic acid (PA). PA is the precursor of the second messenger, diacylglycerol (DAG). Two isoforms of PLD (PLD1 and PLD2) have been identified so far. Both are regulated by protein kinases, small GTPases and Ca2+ (1). PLD1 is phosphorylated at Ser2, Ser561, and Thr147 by PKC (2,3). Phosphorylation at Thr147 and Ser561 regulates PLD1 activity (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor development (1). Mutations in either TSC2 or the related TSC1 (hamartin) gene cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by development of multiple, widespread non-malignant tumors (2). Tuberin is directly phosphorylated at Thr1462 by Akt/PKB (3). Phosphorylation at Thr1462 and Tyr1571 regulates tuberin-hamartin complexes and tuberin activity (3-5). In addition, tuberin inhibits the mammalian target of rapamycin (mTOR), which promotes inhibition of p70 S6 kinase, activation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translation initiation), and eventual inhibition of translation (3,6,7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Eph receptors are the largest known family of receptor tyrosine kinases (RTKs). They can be divided into two groups based on sequence similarity and on their preference for a subset of ligands: EphA receptors bind to a glycosylphosphatidylinositol-anchored ephrin A ligand; EphB receptors bind to ephrin B proteins that have a transmembrane and cytoplasmic domain (1,2). Research studies have shown that Eph receptors and ligands may be involved in many diseases including cancer (3). Both ephrin A and B ligands have dual functions. As RTK ligands, ephrins stimulate the kinase activity of Eph receptors and activate signaling pathways in receptor-expressing cells. The ephrin extracellular domain is sufficient for this function as long as it is clustered (4). The second function of ephrins has been described as "reverse signaling", whereby the cytoplasmic domain becomes tyrosine phosphorylated, allowing interactions with other proteins that may activate signaling pathways in the ligand-expressing cells (5). Various stimuli can induce tyrosine phosphorylation of ephrin B, including binding to EphB receptors, activation of Src kinase, and stimulation by PDGF and FGF (6). Tyr324 and Tyr327 have been identified as major phosphorylation sites of ephrin B1 in vivo (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Vascular endothelial growth factor receptor 3 (VEGFR3) is a 195 kDa membrane receptor tyrosine kinase. VEGF receptors are characterized by the presence of seven extracellular immunoglobulin (Ig)-like domains followed by a membrane-spanning domain and a conserved intracellular tyrosine kinase domain (1). VEGF receptor 3 expression is largely restricted to adult lymphatic endothelium and is thought to control lymphangiogenesis (1,2). Binding of VEGF-C/VEGF-D to VEGFR3 results in transphosphorylation of tyrosine residues in its intracellular domain, recruitment of signaling molecules and activation of ERK1/2 and Akt signaling cascades (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: C1QBP, also referred to as p32, p33, gC1q receptor (gC1qR), and hyaluronic acid binding protein 1 (HABP1), was originally identified via its binding interactions with Splicing Factor (SF-2) (1). Multiple, diverse binding partners of C1QBP were subsequently identified, including the globular heads of complement component C1q, hyaluronic acid, selected protein kinases (2), the tumor suppressor ARF (3-5), and multiple antigens of bacterial and viral origin (6). Research studies have shown that C1QBP is overexpressed in a number of cancer cell types (7), and has been implicated in the Warburg effect, whereby cancer cells shift their metabolism from oxidative phosphorylation to glycolysis (7). C1QBP has also been shown to inhibit the Mitochondrial Permeability Transition (MPT) pore, possibly serving a protective function against damage from oxidative stress (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The super elongation complex (SEC) plays a critical role in regulating RNA polymerase II (RNAPII) transcription elongation (1). The SEC is composed of AFF4, AFF1/AF4, MLLT3/AF9, and MLLT1/ENL proteins. The pathogenesis of mixed lineage leukemia is often associated with translocations of the SEC subunits joined to the histone H3 Lys4 methyltransferase mixed lineage leukemia (MLL) gene (1-4). The SEC has been found to contain RNAPII elongation factors eleven-nineteen lysine-rich leukemia (ELL), ELL2, and ELL3, along with the associated factors EAF1 and EAF2, which can increase the catalytic rate of RNAPII transcription in vitro, (1,2,5-7). The SEC positive transcription elongation factor b (P-TEFb) phosphorylates the carboxy-terminal domain within the largest subunit of RNAP II at Ser2 of the heptapeptide repeat. The SEC negative transcription elongation factors, DRB-induced stimulating factor (DSIF) and negative elongation factor (NELF), signal the transition from transcription initiation and pausing to productive transcription elongation (2,8-10). The chromosomal translocation of MLL with the members of the SEC leads to SEC recruitment to MLL regulated genes, such as the highly developmentally regulated Hox genes, implicating the misregulation and overexpression of these genes as underlying contributors to leukemogenesis (1,2,9,11).

The Fanconi Anemia Antibody Sampler Kit provides an economical means of detecting members of the Fanconi Anemia signaling pathway. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Fanconi anemia (FA) is an autosomal recessive genetic disorder resulting in symptoms that include chromosomal breakage, bone marrow failure, hypersensitivity to DNA cross-linking agents (such as mitomycin C), and a predisposition to cancer (1). In response to DNA damage, the FA nuclear complex (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCM) induces mono-ubiquitination of FANCD2 and FANCI (2).Monoubiquitination of FANCD2 induces localization of FANCD2 to sites of DNA damage, where it interacts with BRCA1 (4). FANCJ/BRIP1, FANCD1/BRCA2, and FANCN/PALB2 are also recruited to sites of DNA damage. FA signaling is important in maintenance of chromosome stability and control of mitosis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation, but it has also been associated with a number of physiological processes including development, differentiation, neurodegenerative diseases, infection, and cancer (3). Autophagy marker Light Chain 3 (LC3) was originally identified as a subunit of microtubule-associated proteins 1A and 1B (termed MAP1LC3) (4) and subsequently found to contain similarity to the yeast protein Apg8/Aut7/Cvt5 critical for autophagy (5). Three human LC3 isoforms (LC3A, LC3B, and LC3C) undergo post-translational modifications during autophagy (6-9). Cleavage of LC3 at the carboxy terminus immediately following synthesis yields the cytosolic LC3-I form. During autophagy, LC3-I is converted to LC3-II through lipidation by a ubiquitin-like system involving Atg7 and Atg3 that allows for LC3 to become associated with autophagic vesicles (6-10). The presence of LC3 in autophagosomes and the conversion of LC3 to the lower migrating form, LC3-II, have been used as indicators of autophagy (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Ras family small GTPase Ran is involved in nuclear envelope formation, assembly of the mitotic spindle, and nuclear transport (1,2). Like other small GTPases, Ran is active in its GTP-bound form and inactive in its GDP-bound form. Nuclear RanGTP concentration is maintained through nuclear localization of guanine nucleotide exchange factor (GEF) activity, which catalyzes the exchange of bound GDP for GTP. Regulator of chromatin condensation 1 (RCC1) is the only known RanGEF (3). RCC1 is dynamically chromatin-bound throughout the cell cycle, and this localization is required for mitosis to proceed normally (4,5). Appropriate association of RCC1 with chromatin is regulated through amino-terminal phosphorylation (5,6) and methylation (7). RCC1 regulation of RanGTP levels in response to histone modifications regulates nuclear import during apoptosis (8). In mitosis RCC1 is phosphorylated at Ser11, possibly by cyclin B/cdc2 (9-11). This phosphorylation may play a role in RCC1 interaction with chromatin and RCC1 RanGEF activity (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glycine decarboxylase (GLDC) is a component of a mitochondrial protein complex that catalyzes the degradation of glycine (1). The glycine cleavage system is composed of three distinct enzymes (P-, T- and L-proteins) and an additional component (H-protein) that transfers a glycine methylamine group from one enzyme to another. The GLDC protein (P-protein) is the decarboxylase that binds the methylamine group for transfer to the T-protein (2). Tumor-initiating cells in the primary non-small cell lung cancer (NSCLC) express high levels of GLDC and LIN28B, both of which are essential for the proliferation of tumor-initiating cells (3). GLDC is an oncogene that promotes tumorigenesis through its metabolic activity (3). Mutations in the corresponding GLDC gene account for the majority of reported cases of glycine encephalopathy, which is a metabolic disorder characterized by the accumulation of glycine, lethargy, hypotonia, intractable seizures, and death (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GGA3 is a member of the GGA family of proteins which also includes GGA1 and GGA2. These proteins consist of four distinct segments: a VHS domain that binds the di-leucine sorting signal DXXLL; a GAT domain that binds Arf-GTP; a hinge region that recruits clathrin; and a GAE domain that has sequence similarity to γ-adaptin and recruits a number of proteins. Arf1-GTPase recruits GGA3 to the trans-Golgi network. GGAs sort acid hydrolases to the lysosome and are involved in transporting proteins containing the DXXLL signal from the Golgi complex to the endosome (1). During apoptosis or cerebral ischemia, GGA3 is cleaved by caspase-3 at Asp313, reducing GGA3 levels and lysosomal degradation of β-secretase (BACE). The resulting elevated amount and activity of BACE plays a role in amyloid-β (Aβ) production, consistent with BACE elevation and Aβ accumulation in Alzheimer’s Disease (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dexras1 (Ras dexamethasone induced 1) belongs to the Ras superfamily of GTPases and was initially identified as a dexamethasone inducible gene (1,2). Dexras1 reportedly regulates several distinct signal transduction pathways, including MAPK signaling, NMDA receptor-nitric oxide-mediated signaling, and pathways involving adenylyl cyclases (3-5). Dexras1 can directly modulate FE65-APP-mediated transcription and regulate the photic sensitivity of the mammalian circadian clock (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in one-carbon metabolism, catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. 5-methyltetrahydrofolate donates its methyl group for remethylation of homocysteine to methionine. Methionine is further converted to S-adenosylmethionine (SAM), a major reactive methyl carrier. DNA methyltransferases and histone methyltransferases use SAM to methylate DNA and histones with concomitant conversion of SAM to S-adenosylhomocysteine (SAH) (1, 2). In addition, MTHFR is inhibited by SAM and this feedback inhibition is partially reduced by SAH (3). Metabolically regulated levels of SAM and SAM/SAH ratio are shown to predict histone methylation levels, indicating the important role of enzymes in one-carbon metabolism including MTHFR in determining histone methylation status (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Hic-5 is a LIM domain family member orginally identified as a TGFbeta1 and hydrogen peroxide inducible gene, and is nearly identical to the androgen receptor co-activator ARA55 (1-3). Hic-5 is structurally related to paxillin, and both proteins are localized to focal adhesions and thought to serve as adaptor molecules, linking signals from the extracellular matrix to cytoskeletal regulation and intracelluar signaling (4,5). Like paxillin, Hic-5 contains four LD motifs and four LIM domains. Expression of Hic-5 can affect cell growth and differentiation (6-8). Increased expression of Hic-5 is observed during cellular senescence in fibroblasts, and ectopic expression in immortalized fibroblasts suppressed cell growth (8). Unlike paxillin, Hic-5 may translocate to the nucleus in response to oxidants like hydrogen peroxide (9). It has been proposed that Hic-5 serves to shuttle redox signaling from focal adhesions to the nucleus where it acts as a transcriptional co-activator for some transciption factors including, Sp1 and PPARgamma (7,9,10). Phosphorylation of Hic-5 at Tyr60 by CAKbeta and Fyn may activiate Hic-5 signaling by allowing binding to downstream SH2 domain containing proteins (11).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Telomeric repeat-binding factor 2-interacting protein (TERF2IP, also known as RAP1) is a component of the Shelterin Complex, a multi-protein complex that binds and organizes telomeres into T-loop structures to prevent them from being recognized by the cell as DNA double stranded breaks (1,2). The Shelterin Complex is composed of TERF2IP, TIN2 and TPP2 proteins, in addition to three DNA binding proteins that function to recruit the complex to telomeres: TRF1 and TRF2 bind double-stranded TTAGGG repeats found at telomeres, while the POT1 protein binds single-stranded TTAGGG repeats found at the very end of the telomeres (2). Together, these proteins function to protect telomeres and ensure proper replication and processing of chromosome ends. Recent studies have shown that TERF2IP is dispensable for maintenance of telomere length, organization of telomeric chromatin, and regulation of telomeric transcription (3,4). However, TERF2IP is required for inhibition of homology-directed repair (HDR), which can create undesirable telomeric sister chromatid exchange (3,4). In addition to its role in telomere maintenance, TERF2IP is also found in the cytoplasm, where it functions as an IκB kinase (IKK) adaptor protein and regulates NF-κB-dependent gene expression (5). TERF2IP forms a complex with IKKs and is critical for proper recruitment of IKKs to and activation of the p65 subunit of NF-κB. Elevated levels of TERF2IP have been found in breast cancer cells with NF-κB hyperactivity, and knockdown of TERF2IP sensitizes these cells to apoptosis, further identifying TERF2IP as a potential cancer therapeutic target (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Sec61 translocon is a channel complex located on the endoplasmic reticulum (ER) membrane to mediate membrane protein insertion into the organelle (1). There are three components in the complex, Sec61A, Sec61B, and Sec61G (2). Sec61A is the main component of the channel on the ER membrane and directly contacts nascent synthesized polypeptide TMD (transmembrane domain) for insertion (3). Sec61G functions in stablizing the channel (3). In addition to TMD insertion, Sec61 translocon has also been shown to be involved in ER calcium leakage (4,5). Both Bip and calmodulin can inhibit this leakage by their interaction with Sec61A (6,7). Sec61B has no obvious function related to target protein ER membrane insertion, but is involved in other vesicle trafficking processes such as EGFR and Her2 trafficking from the cytosol to nucleus (8,9), Gurken trafficking from Golgi to plasma membrane (10), and copper-transporting ATPase membrane distribution (11).