Microsize antibodies for $99 | Learn More >>

Product listing: LINGO-1 Antibody, UniProt ID Q96FE5 #49389 to SCAI (D9A7Y) Rabbit mAb, UniProt ID Q8N9R8 #12892

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Leucine-rich repeat and immunoglobulin domain-containing protein (LINGO-1) is a potent negative modulator of neuronal processes including neuronal survival, axonal integrity, oligodendrocyte differentiation, and myelination (1-5). LINGO-1, Nogo receptor (NgR), and p75 neurotrophin receptor (p75NTR), or TNF receptor orphan Y (TROY) form a tripartite receptor complex, which activates RhoA/ROCK signaling and is responsible for the inhibition effect of myelin- associated factors (6,7). LINGO-1 is abundantly expressed in the brain and is implicated in various neurodegenerative disorders such as Essential tremor, multiple sclerosis and Parkinson’s disease (8-11). Recently, LINGO-1 was reported to bind directly to amyloid precursor protein (APP), promoting its degradation through lysosomal proteolysis (12). This research study implicated that Lingo-1 plays a critical role in the pathophysiology of Alzheimer's disease.

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated PKM2 (D78A4) XP® Rabbit mAb #4053.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: Pyruvate kinase is a glycolytic enzyme that catalyses the conversion of phosphoenolpyruvate to pyruvate. In mammals, the M1 isoform (PKM1) is expressed in most adult tissues (1). The M2 isoform (PKM2) is an alternatively spliced variant of M1 that is expressed during embryonic development (1). Research studies found that cancer cells exclusively express PKM2 (1-3). PKM2 is shown to be essential for aerobic glycolysis in tumors, known as the Warburg effect (1). When cancer cells switch from the M2 isoform to the M1 isoform, aerobic glycolysis is reduced and oxidative phosphorylation is increased (1). These cells also show decreased tumorigenicity in mouse xenografts (1). Recent studies showed that PKM2 is not essential for all tumor cells (4). In the tumor model studied, PKM2 was found to be active in the non-proliferative tumor cell population and inactive in the proliferative tumor cell population (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glucose homeostasis is regulated by hormones and cellular energy status. Elevations of blood glucose during feeding stimulate insulin release from pancreatic β-cells through a glucose sensing pathway. Feeding also stimulates release of gut hormones such as glucagon-like peptide-1 (GLP-1), which further induces insulin release, inhibits glucagon release and promotes β-cell viability. CREB-dependent transcription likely plays a role in both glucose sensing and GLP-1 signaling (1). The protein CRTC2 (CREB-regulated transcription coactivator 2)/TORC2 (transducer of regulated CREB activity 2) functions as a CREB co-activator (2,3) and is implicated in mediating the effects of these two pathways (4). In quiescent cells, CRTC2/TORC2 is phosphorylated at Ser171 and becomes sequestered in the cytoplasm via an interaction with 14-3-3 proteins. Glucose and gut hormones lead to the dephosphorylation of CRTC2/TORC2 and its dissociation from 14-3-3 proteins. Dephosphorylated CRTC2/TORC2 enters the nucleus to promote CREB-dependent transcription. CRTC2/TORC2 plays a key role in the regulation of hepatic gluconeogenic gene transcription in response to hormonal and energy signals during fasting (5).CRTC2/TORC2-related proteins CRTC1/TORC1 and CRTC3/TORC3 also act as CREB co-activators (2,3). CRTC1/TORC1, CRTC2/TORC2 and CRTC3/TORC3 associate with the HTLV Tax protein to promote Tax-dependent transcription of HTLV-1 long terminal repeats (6,7). CRTC1/TORC1 is highly phosphorylated at Ser151 in mouse hypothalamic cells under basal conditions (8). When these cells are exposed to cAMP or a calcium activator, CRTC1/TORC1 is dephosphorylated and translocates into the nucleus (8). CRTC1/TORC1 is essential for energy balance and fertility (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Complexins are small soluble proteins composed of a central α-helical-structured domain surrounded by amino- and carboxy-terminal unstructured domains (1). These cytosolic proteins bind to t-SNAREs with low affinity and to assembled SNARE complexes with high affinity (1,2). Two isoforms, complexin-1 and complexin-2, are expressed in neuronal cells (3) where they regulate evoked and spontaneous exocytosis (4,5). Altered complexin expression resulting from RNAi-mediated knockdown (6) or gene invalidation (7) leads to alteration in spontaneous fusion events and neurotransmitter release, which reflects functions at both inhibitory and stimulatory synapses.

$489
96 assays
1 Kit
The PathScan® Total Cox2 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Cox2. A Cox2 Mouse Antibody has been coated onto the microwells. After incubation with cell lysates, Cox2 protein is captured by the coated antibody. Following extensive washing, a Cox2 Rabbit Detection Antibody is added to detect the captured Cox2 protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for the developed color is proportional to the quantity of Cox2.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Cyclooxygenase1 (Cox1) and cyclooxygenase2 (Cox2), family members with 60% homology in humans, catalyze prostaglandin production from arachidonic acid (1,2). While Cox1 expression is constitutive in most tissues, Cox2 expression is induced by lipopolysaccharide (LPS) and peptidoglycan (PGN) (3). PGN activates Ras, leading to phosphorylation of Raf at Ser338 and Erk1/2 at Tyr204. The activation of MAP kinase signaling results in subsequent activation of IKKα/β, phosphorylation of IκBα at Ser32/36, and NF-κB activation. Finally, activation of the transcription factor NF-κB is responsible for the induction of Cox2 expression (4). Investigators have shown that LPS and PGN induce the clinical manifestations of arthritis and bacterial infections, such as inflammation, fever, and septic shock (5). Research studies have indicated that Cox1 and Cox2 may also play a role in the neuropathology of Alzheimer's disease by potentiating γ-secretase activity and β-amyloid generation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thioester complex with the ubiquitin-activating enzyme (E1). The activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, and then from E2 to ubiquitin ligase E3 for final delivery to the ε-amino group of the target protein lysine residue (1-3).Ubiquitin-activating enzyme E1-like protein 2/Ubiquitin-like modifier-activating enzyme 6 (UBE1L2/UBA6) is ubiquitously expressed in human tissues and functions as an E1 enzyme related to UBE1/UBA1 (40% identity at the protein level). UBE1L2/UBA6 activates both ubiquitin and the ubiquitin-like protein FAT10 through a similar ATP dependent mechanism (4-6). Like other E1 protein family members, UBE1L2/UBA6 contains a conserved ATP-binding adenylation domain and an active site cysteine residue that are critical for enzymatic function (4,5). Research studies have demonstrated that UBE1L2/UBA6 expression is essential during the early stages of embryogenesis in mice (4). Furthermore, loss of neuronal UBE1L2/UBA6 expression promotes significant defects in neuronal structure and function, which contributes to a reduction in body weight and decreased postnatal viability (7).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated LC3A/B (D3U4C) XP® Rabbit mAb #12741.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation, but it has also been associated with a number of physiological processes including development, differentiation, neurodegenerative diseases, infection, and cancer (3). Autophagy marker Light Chain 3 (LC3) was originally identified as a subunit of microtubule-associated proteins 1A and 1B (termed MAP1LC3) (4) and subsequently found to contain similarity to the yeast protein Apg8/Aut7/Cvt5 critical for autophagy (5). Three human LC3 isoforms (LC3A, LC3B, and LC3C) undergo post-translational modifications during autophagy (6-9). Cleavage of LC3 at the carboxy terminus immediately following synthesis yields the cytosolic LC3-I form. During autophagy, LC3-I is converted to LC3-II through lipidation by a ubiquitin-like system involving Atg7 and Atg3 that allows for LC3 to become associated with autophagic vesicles (6-10). The presence of LC3 in autophagosomes and the conversion of LC3 to the lower migrating form, LC3-II, have been used as indicators of autophagy (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: Anion exchange protein 1 (AE1), also named solute carrier family 4 member 1 (SLC4A1), is an anion transporter that mediates chloride-bicarbonate exchange in the kidney and regulates normal acidification of the urine (1,2). A different isoform of AE1 is a major integral membrane structure protein of erythrocytes, where it plays a critical role in the removal of carbon dioxide from tissues (3). In addition, AE1 is required for normal flexibility and stability of the erythrocyte membrane. Mutations in SLC4A1 can lead to hereditary spherocytosis, ovalocytosis, and distal renal tubular-acidosis (4-7). Other mutations that do not cause disease became novel blood group antigens, which are part of the Diego blood group system (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Mitotic control is important for normal growth, development, and maintenance of all eukaryotic cells. Research studies have demonstrated that inappropriate control of mitosis can lead to genomic instability and cancer (reviewed in 1,2). A regulator of mitosis, Greatwall kinase (Gwl), was first identified in Drosophila melanogaster (3). Subsequent studies showed that, based on sequence homology and function, microtubule-associated serine/threonine kinase-like (MASTL) is the human ortholog of Gwl (4). Regulation of MASTL/Gwl activation has been shown to be critical for the correct timing of mitosis. Research studies have shown that Gwl is activated by hyperphosphorylation (5). The phosphorylation of human Gwl at Thr194 and Thr207 by active cyclin B1-cdc2 leads to possible autophosphorylation at Ser875 (Ser883 in Xenopus), which stabilizes the kinase. Activated Gwl phosphorylates α-Endosulfine (ENSA) and cAMP-regulated phosphoprotein 19 (ARPP19) at Ser67 and Ser62, respectively. Phosphorylated ENSA and ARPP19 inhibit the activity of the B55 subunit-associated form of protein phosphatase 2A (PP2A-B55), allowing for complete phosphorylation of mitotic substrates by cyclin B1-cdc2 and mitotic entry. When Gwl is inactivated, PP2A-B55 reactivates, which leads to dephosphorylation of cyclin B1-cdc2 and mitotic exit (5,6, reviewed in 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The differentiation process of neurons can be divided into five stages, each stage characterized by morphological changes observed in the developing cells. In stage 1, the cells extend lamellipodia and in stage 2 their lamellipodia develop into immature neurites. In stage 3 one neurite elongates rapidly to form an axon and in stage 4 the remaining immature neuritis elongate to form dendrites. In stage 5 synaptic contacts are formed and a neuronal network is established (1).Shootin1 is involved in generating internal asymmetric signals required for neuronal during stages 2 and 3. The extension of an axon requires considerable reorganization of the cytoskeleton mediated by PI3K/Akt and PI3K/Cdc42 signaling (1). Shootin1 is involved in regulating the subcellular localization of PI3 kinase. Furthermore, shootin1 is upregulated during polarization and accumulates asymmetrically in a single neurite that consequently elongates rapidly to form an axon (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: MEX3C is an RNA-binding E3 ubiquitin ligase implicated in a diverse set of biological functions.Along with PIGN and ZNF516, MEX3C has been identified as a suppressor of chromosome instability (CIN), which drives intratumor heterogeneity and has been associated with poor prognosis in colon cancer. Silencing of the Mex3c gene induces chromosome instability through replication stress/impaired replication fork progression (1).In mice, absence of the Mex3c gene causes growth retardation and reduced insulin-like growth factor 1 (IGF1) expression (2). Researchers have shown that murine MEX3C plays a role in controlling energy expenditure, physical activity and degree of adiposity (3,4). In the immune system, MEX3C is involved in post-transcriptional regulation of HLA-A2 (5), and plays a role in eliciting antiviral response (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dicer is a member of the RNase III family that specifically cleaves double-stranded RNAs to generate microRNAs (miRNAs) (1). After long primary transcript pri-miRNAs are processed to stem-looped pre-miRNAs by Drosha (2), pre-miRNAs are transported to the cytoplasm and further processed by Dicer to produce 22-nucleotide mature miRNAs (3). The mature miRNA then becomes a part of the RNA-Induced Silencing Complex (RISC) and can bind to the 3' UTR of the target mRNA (3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Proliferating cell nuclear antigen (PCNA) is a member of the DNA sliding clamp family of proteins that assist in DNA replication (1). PCNA associated factor (PAF15) interacts with PCNA to recruit DNA replicative polymerase. In response to DNA damage, PCNA recruits a low fidelity DNA polymerase to allow bypass of lesions that would otherwise stall DNA replication. This form of DNA damage tolerance is called translesion synthesis (TLS), and is regulated in part by PAF15 (2,3). Ubiquitination of PAF15 at lysines 15 and 24 regulates its interactions with PCNA and DNA polymerase (3). PAF15 is overexpressed in human cancers, and research studies show a correlation between PAF15 expression and poor prognosis (3,4).

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: Chk2 is the mammalian orthologue of the budding yeast Rad53 and fission yeast Cds1 checkpoint kinases (1-3). The amino-terminal domain of Chk2 contains a series of seven serine or threonine residues (Ser19, Thr26, Ser28, Ser33, Ser35, Ser50, and Thr68) each followed by glutamine (SQ or TQ motif). These are known to be preferred sites for phosphorylation by ATM/ATR kinases (4,5). After DNA damage by ionizing radiation (IR), UV irradiation, or hydroxyurea treatment, Thr68 and other sites in this region become phosphorylated by ATM/ATR (5-7). The SQ/TQ cluster domain, therefore, seems to have a regulatory function. Phosphorylation at Thr68 is a prerequisite for the subsequent activation step, which is attributable to autophosphorylation of Chk2 at residues Thr383 and Thr387 in the activation loop of the kinase domain (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tripeptidyl-peptidase 2 (TPP2) is a well-conserved subtilisin-like amino peptidase that is expressed predominantly in the cytoplasmic compartment (1,2). The amino-terminal region of TPP2 harbors a catalytic triad that is characteristic of serine proteases and allows for TPP2 cleavage of tripeptides from the free amino terminus of oligopeptide substrates (3). TPP2 is a large (>5MDa) homooligomeric protease in which proteolytic activity is regulated by subunit oligomerization (4,5). While TPP2 plays a general role in amino acid homeostasis, research studies demonstrate that TPP2 is involved in MHC class I antigen presentation (6,7) and DNA-damage repair (8). TPP2 activity is required for the survival of Burkitt's lymphoma cells, suggesting a possible role for TPP2 in oncogenesis (9). Additional research studies show that TPP2 proteolytic activity is important for regulating lysosome abundance and glycolytic metabolism and that TPP2 deficiency leads to defects in adaptive immunity, innate immunity, and nervous system development (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: DNA damage resulting from genotoxic stress activates cellular checkpoints that prevent or delay cell division until either damaged DNA is repaired or the cell follows an apoptotic pathway. The Rad9 homolog A (Rad9A, Rad9) protein is part of a checkpoint protein complex that acts as an early sensor of DNA damage. Together with the Hus1 and Rad1 checkpoint proteins, Rad9 forms a heterotrimeric 9-1-1 complex with a ring structure similar to the processivity factor PCNA. The 9-1-1 complex induces multiple signaling pathways, including the ATM and ATR-activated DNA repair pathways (1,2). A functional 9-1-1 complex is required for ATR-dependent S phase checkpoint signaling (3).The 9-1-1 complex interacts with DNA topoisomerase 2-binding protein 1 (TopBP1) in response to DNA damage, activating ATR and causing signal amplification through further recruitment of TopBP1 (4). The 9-1-1 complex interacts with DNA mismatch repair proteins MSH2, MSH3, and MSH6 to play a role in mismatch repair (5). During an error-free DNA damage tolerance process, the 9-1-1 complex cooperates with polyubiquitinated PCNA and Exo1 nuclease to support switching of the replicative polymerase to the undamaged template (6).Research studies indicate that the two Rad9 paralogues (Rad9A and Rad9B) can both functionally complement one another and display distinct biological functions.Specifically, Rad9B senses nucleolar stress and causes a delay in the cell cycle at G1/S phase (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: RBPSUH (Recombining Binding Protein, SUppressor of Hairless), also termed RBP-J or CSL, is the DNA-binding component of the transcription complex regulated by canonical Notch signaling. In the absence of Notch activation, RBPSUH suppresses target gene expression through interactions with a co-repressor complex containing histone deacetylase. Upon activation of Notch receptors, the Notch intracellular domain (NICD) translocates to the nucleus and binds to RBPSUH. This displaces the co-repressor complex and replaces it with a transcription activation complex that includes Mastermind-like (MAML) proteins and histone acetylase p300, leading to transcriptional activation of Notch target genes (1-3). RBPSUH is also the DNA-binding partner for Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2), a protein critical for latent viral transcription and immortalization of EBV-infected B cells (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Class 3 secreted semaphorin (Sema3A) is a chemorepellent that acts upon a wide variety of axons. As such, it induces a dramatic redistribution and depolymerization of actin filaments that results in growth cone collapse. Plexins are single membrane-spanning signaling proteins encompassing Plexin A1, A2, A3, and A4. Plexins form a complex with neuropilin-1 and -2 and the cell adhesion protein L1 to form a functional semaphorin receptor (1,2). The GTPase Rnd1 binds to the cytoplasmic domain of Plexin A1 to trigger cytoskeletal collapse. In contrast, the GTPase RhoD blocks Rnd1-mediated Plexin A1 activation and repulsion of sympathetic axons by Sema3A (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: p62Dok (Dok-1) is a major tyrosine-phosphorylated, GAP-associated, 60 kDa protein present within the cells transformed by different tyrosine kinases (1). p62Dok contains an amino-terminal pleckstrin homology domain potentially involved in phospholipid interaction and membrane targeting, a central putative phospho-tyrosine binding domain for interacting with tyrosine-phosphorylated proteins. There are numerous tyrosines in its carboxy-terminal region that are potential targets for tyrosine kinases. If phosphorylated, these tyrosines could serve as docking sites for proteins that contain an SH2 domain (2). Overexpression of p62Dok has been shown to inhibit Ras activity in human embryonic kidney 293 cells and B cell antigen receptor-mediated c-Fos promoter activation in an immature B cell line (3), suggesting that p62Dok may play a negative role in Ras signaling. Moreover, p62Dok overexpression may also inhibit insulin-stimulated Akt activation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Secreted Frizzled-related proteins (SFRPs) display homology and structural similarity to the extracellular cysteine-rich Wnt-binding domain of the G protein-coupled receptor Frizzled (1,2). To date, five distinct SFRPs (SFRP1 to 5) have been found in mammalian cells. These secreted proteins typically act as antagonists to Wnt signaling by directly binding and inhibiting Wnt proteins, or by binding Frizzled to block Wnt protein interaction with the receptor (3). The various SFRPs bind and regulate Wnt proteins differentially; these proteins also display distinct expression patterns as they play important roles in regulating development (4-7). SFRP proteins appear to act as tumor suppressors, with loss of expression or function correlating with many invasive forms of cancer. Deletion of the corresponding SFRP1 gene and promoter hypermethylation leading to gene silencing has been reported in a number of cancers. Abnormal expression of SRFP1 and other Wnt signaling proteins is associated with some cases of retinitis pigmentosa (reviewed in 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CIN85 was independently identified as Cbl-interacting protein of 85 kDa (1), Ruk (regulator of ubiquitous kinase) (2), SETA (SH3 domain-containing gene expressed in tumorigenic astrocytes) (3), and SH3KBP1 (SH3 domain kinase binding protein 1) (4). The genes encoding these proteins were isolated from either human (CIN85), rat (Ruk and SETA), or mouse (SH3KBP1) sources and share between 92% and 97% sequence identity, suggesting that they represent homologues of one gene. Differential promoter usage and alternative splicing is thought to occur in a tissue specific and developmentally regulated manner to generate a complex expression pattern of various transcripts and encoded protein isoforms (5). The main isoform in humans, CIN85, contains three N-terminal SH3 domains, a proline-rich region harboring several P-X-X-P motifs that provide recognition sites for SH3 domain-containing proteins, a PEST sequence implicated in CIN85 degradation, and a C-terminal coiled-coil region for oligomerization (1,2,5,6). The other molecular variants of CIN85 are shorter, N-terminally truncated proteins lacking one, two, or all three of the SH3 domains (1,5,6-8). Proteomic screens suggest that CIN85 is phosphorylated at multiple sites and the role of phosphorylation of some of these sites in regulation of intra- and intermolecular interactions of CIN85 cannot be excluded. CIN85 belongs to the CD2AP/CMS family of adaptor proteins and has been shown to interact with signaling molecules such as c-Cbl, Cbl-b, BLNK, p85/PI3K, GRB2, p130 Cas, and endophilins to coordinate the activity of multiple signaling cascades. Indeed, a growing body of evidence suggests that CIN85 is required for the regulation of a variety of cellular processes including vesicle-mediated transport (9-12), signal transduction (13,14), and cytoskeleton remodelling (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Striatal enriched phosphatase (STEP, also known as PTPN5), is a protein tyrosine phosphatase expressed in dopaminoceptive neurons of the central nervous system (1). Alternative splicing produces the cytosolic STEP46 and the membrane-associated STEP61 isoforms of STEP. Dopamine activates D1 receptors and PKA, which in turn phosphorylate both isoforms of STEP. Phosphorylation of STEP61 occurs at Ser160 and Ser221, while STEP46 is phosphorylated at Ser49 (equivalent to Ser221 of STEP61) (2). NMDA-mediated activation of STEP is an important mechanism for regulation of Erk activity in neurons (3). Furthermore, STEP is involved in the regulation of both NMDAR and AMPAR trafficking (4,5). Due to its importance in cognitive function, STEP may play a role in Alzheimer's disease (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphatidylinositol lipids and phosphoinositides are important second messengers, their generation controlling many cellular events. Intracellular levels of these molecules are regulated by phosphoinositide kinases and phosphatases. One of the best characterized lipid kinases is phosphoinositide 3-kinase (PI3K), which is responsible for phosphorylation on the D-3 position of the inositide head group (1). This action of PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN, the well characterized partnering phosphatase, reverses this process by removing the phosphate from PI(3,4,5)P3 at the D-3 position to generate PI(4,5)P2 (1,2). Dephosphorylation on the D-5 position to generate PI(3,4)P2 occurs through the action of SHIP1 or SHIP2 (3), and dephosphorylation on the D-4 position to generate PI(3)P can occur through the action of inositol polyphosphate 4-phosphatase isoenzymes type I (INPP4a) and type II (INPP4b) (4,5). While INPP4a has been implicated in neuronal survival and megakaryocyte lineage determination (6,7), less is understood about INPP4b. It has been shown that two splice variants of INPP4b occur in mice, each showing distinct tissue distribution and subcellular localization (5,8).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated antibody MEK1/2 (D1A5) Rabbit mAb #8727.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cripto, also known as teratocarcinoma derived growth factor 1 (TDGF-1), belongs to the EGF-CFC family of proteins. Members of this family are characterized by an N-terminal signal peptide, a conserved cysteine rich domain (CFC motif), and a short hydrophobic carboxy-terminal tail that contains GPI cleavage and attachment sites. The GPI moiety anchors Cripto and family members to the extracellular plasma membrane (1). An O-linked fucosylation site within the EGF-like motif is required for Cripto and related family members to perform their function as co-receptors for TGF-β-related ligands such as Nodal and Vg1/GDF1 (2,3). Soluble forms of Cripto can be produced - these contain intact EGF and CFC domains, and are thought to have paracrine activities, as opposed to the autocrine activity of Cripto functioning as a coreceptor (4). Understanding of this paracrine activity is not complete, but it is proposed that Cripto may act as co-ligand for Nodal (3).Cripto is an important modulator of embryogenesis and oncogenesis (4). It is highly expressed in early embryos, and in embryonic stem (ES) cells where it is involved in cardiomyocytic differentiation and acts as a negative regulator of neurogenesis (5-7). Transient activation of Cripto is essential for the capacity of stem cell self-renewal and pluripotency in ES cells, and in some adult derived stem cells (8). Signaling through Cripto can also stimulate other activities that promote tumorigenesis such as stimulation of proliferation, cell motility, invasion, angiogenesis and epithelial-mesenchymal transition (EMT) (9-11). Cripto is highly expressed in a broad range of tumors, where it acts as a potent oncogene.

$489
96 assays
1 Kit
The PathScan® Phospho-YAP (Ser397) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of YAP protein phosphorylated at Ser397. A Phospho-YAP (Ser397) rabbit antibody has been coated onto the microwells. After incubation with cell lysates, only phospho-YAP proteins are captured by the coated antibody. Following extensive washing, a YAP mouse mAb is added to detect the captured phospho-YAP protein. Anti-mouse, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of YAP phosphorylated at Ser397.Antibodies in this kit are custom formulations specific to kit.
REACTIVITY
Human

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser109, Ser127) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).

$327
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-YAP (Ser127) (D9W2I) Rabbit mAb #13008.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser109, Ser127) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: PZR (Protein zero related) is an immunoglobulin superfamily protein that specifically binds the tyrosine phosphatase SHP-2 through its intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) (1,2). PZR is phosphorylated by c-Src, c-Fyn, c-Lyn, Csk, and c-Abl (3). PP1, a Src family kinase inhibitor, inhibits PZR phosphorylation (4,5). There are three alternatively spliced isoforms, designated as PZR, PZRa, and PZRb; both PZRa and PZRb lack ITIMs (6,7). PZR is the main receptor of ConA and has an important role in cell signaling via c-Src (4). PZR is expressed in many cell types and is localized to cell contacts and intracellular granules in BAECs and mesothelioma (REN) cells. PZR has been implicated as a cell adhesion protein that may be involved in SHP-2-dependent signaling at interendothelial cell contacts (3). Hypertyrosine phosphorylation of PZR was observed during embryogenesis in a mouse model of Noonan syndrome (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The serum response factor (SRF) is a ubiquitous protein that modulates transcription of genes containing serum response elements (SRE) at their promoters. SRF regulates cellular processes such as cell proliferation and cytoskeletal signaling in conjunction with a variety of cofactors (1-3).Suppressor of cancer cell invasion (SCAI) is a highly conserved transcriptional cofactor that inhibits the activity of myocardin-related transcription factor (MRTF) family members MAL (MRTF-A), myocardin and OTT-MAL (4,5). SCAI controls the expression of integrin β1 and regulates cell migration and invasion in vitro (4). SCAI has also been shown to play a role in transcriptional regulation in neurons by regulating dendritic morphology through inhibition of the megakaryoblastic leukemia (MKL) family of transcription cofactors (6). Research studies have implicated SCAI in the regulation of the epithelial-to-mesenchymal transition (EMT) as well as in renal fibrosis (7).