Microsize antibodies for $99 | Learn More >>

Product listing: VISTA (D1L2G™) XP® Rabbit mAb (Alexa Fluor® 647 Conjugate), UniProt ID Q9H7M9 #92734 to DAP1 Antibody, UniProt ID P51397 #2282

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated VISTA (D1L2G™) XP® Rabbit mAb #64953.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry

Background: VISTA (V-Domain Ig Suppressor of T Cell Activation) is a negative checkpoint control protein that regulates T cell activation and immune responses. VISTA, which contains a single Ig-like V-type domain, a transmembrane domain, and an intracellular domain, has sequence similarity to both the B7 and CD28 family members. Although primarily expressed by myeloid cells, VISTA is also expressed by CD4+, CD8+, and FoxP3+ T-cells. Thus, VISTA is described as both a ligand and a receptor (1-3). Blocking VISTA induces T-cell activation and proliferation, and potentiates disease severity in the EAE model (1). Furthermore, genetic deletion of VISTA in mice leads to spontaneous T-cell activation and chronic inflammation (4,5). In mouse models of cancer, neutralization of VISTA enhances T-cell proliferation and effector function and increases tumor infiltration, suggesting VISTA blockade could be an effective strategy for tumor immunotherapy (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ku is a heterodimeric protein composed of two subunits (Ku70 and Ku80) originally identified by researchers as autoantigens associated with several autoimmune diseases including scleroderma, polymyositis, and systemic lupus erythematosus (1). Ku is an abundant, ubiquitously expressed nuclear protein that binds to and stabilizes the ends of DNA at telomeres or double-stranded DNA breaks (2-5). The Ku70/Ku80 heterodimer has ATP-dependent DNA helicase activity and functions as the DNA-binding regulatory component of DNA-dependent protein kinase (DNA-PK) (6-8). The assembly of the DNA-PK complex at DNA ends is required for nonhomologous end-joining (NHEJ), one mechanism involved in double-stranded DNA break repair and V(D)J recombination (8). DNA-PK has been shown to phosphorylate many proteins, including p53, serum response factor, c-Jun, c-Fos, c-Myc, Oct-1, Sp-1, and RNA polymerase II (1,8). The combined activities of Ku70/Ku80 and DNA-PK implicate Ku in many cellular functions, including cell cycle regulation, DNA replication and repair, telomere maintenance, recombination, and transcriptional activation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SH2D1A and SH2D1B are small, adaptor proteins with a single SH2-domain that play important signal transduction roles mediated by the signaling lymphocytic activation molecule (SLAM) family receptors (1). SH2D1A (also called SAP or SLAM-associated protein) is frequently mutated in patients with X-linked lymphoproliferative disease (Duncan’s disease), which is characterized by extreme susceptibility to Epstein-Barr virus; approximately 50 different SH2D1A mutations have been reported to date (2-4). The single SH2D1B gene in humans (also called EAT-2 or Ewing's sarcoma's/FLI1-activated transcript 2) is present as a pair of duplicated EAT-2A and EAT-2B genes with identical genomic organization in mouse and rat (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainite- and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are comprised of four subunits (GluR 1-4) that assemble as homo- or hetero-tetramers and mediate the majority of fast excitatory transmissions in the CNS. AMPARs are implicated in synapse formation, stabilization and plasticity. Post-transcriptional modifications (alternative splicing and nuclear RNA editing) and post-translational modifications (glycosylation, phoshorylation) result in a very large number of permutations, fine-tuning the kinetic properties of AMPARs (1). GluR 3 knockout mice exhibited normal basal synaptic transmission and long-term depression (LTD) but enhanced long-term potentiation (LTP). In contrast, GluR 2/3 double knockout mice are impaired in basal synaptic transmission (2). Aberrant GluR 3 expression or activity is implicated in a number of diseases, including autoimmune epilepsy, X-linked mental retardation, Rett's syndrome, amyotrophic lateral sclerosis and Alzheimer disease (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CDK9 (C12F7) Rabbit mAb #2316.
APPLICATIONS
REACTIVITY
Bovine, Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: P-TEFb is a general transcription factor that regulates transcription elongation through phosphorylation of the C-terminal tail domain (CTD) of RNA polymerase II (RNAP II). The P-TEFb complex is composed of a catalytic subunit, CDK9, and its regulatory cyclin partner, which can be cyclin T1, T2a, T2b or K (reviewed in 1,2). P-TEFb is recruited by the HIV Tat protein to allow transcriptional elongation, and subsequent replication of the viral genome. Inhibition of P-TEFb function therefore has potential for HIV therapy. CDK9 exists as two isoforms, an abundant 42 kDa isoform, and a less abundant 55 kDa isoform, which contains an amino-terminal extension (3). The two forms likely have distinct purposes based on differential expression during lymphocyte activation (4,5) and on their localization within the nucleus (5).Cyclin dependent kinases (CDKs) are activated in part by cyclin binding and by phosphorylation of a conserved threonine in the T-loop domain. Phosphorylation of CDK9 at the T-loop Thr186 by an unidentified nuclear kinase may be important in P-TEFb activation (6) and regulation of HIV transcription (7). Acetylation of CDK9 at Lys44 affects its ability to phosphorylate the RNAPII CTD (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The human checkpoint protein Rad17 and its fission and budding yeast orthologues (Schizosaccharomyces pombe Rad17 and Saccharomyces cerevisiae Rad24, respectively) are involved in the activation of checkpoint signals in response to DNA damage or disruption of DNA synthesis (1-4). Treatment of human cells with genotoxic agents induces ATM/ATR-dependent phosphorylation of Rad17 at Ser635 and Ser645. Rad17 phosphorylation is a critical early event during checkpoint signaling in DNA-damaged cells (5-7).

$327
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cleaved-IL-1β (Asp116) (D3A3Z) Rabbit mAb #83186.
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Interleukin-1β (IL-1β), one of the major caspase-1 targets, is a multifunctional cytokine that is involved in a host of immune and proinflammatory responses (1). It is produced primarily by activated monocytes and macrophages. It signals through various adaptor proteins and kinases that lead to activation of numerous downstream targets (2-6). Human IL-1β is synthesized as a 31 kDa precursor. To gain activity, the precursor must be cleaved by caspase-1 between Asp116 and Ala117 to yield a 17 kDa mature form (7,8). Detection of the 17 kDa mature form of IL-1β is a good indicator of caspase-1 activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glutamatergic neurons release glutamate, the most common excitatory neurotransmitter. Their synaptic vesicles are filled with glutamate by vesicular glutamate transporters, VGLUTs (1). VGLUT1, also called solute carrier family 17 member 7 (SLC17A7), was first identified as an inorganic phosphate transporter (2). Despite the absence of homology with neurotransmitter transporters, VGLUT1 was later demonstrated to be a glutamate transporter (1) specific to glutamatergic neurons (3). Closely related to VGLUT1, VGLUT2 and VGLUT3 are also involved in glutamate uptake into synaptic vesicles, but define different neuronal subpopulations (4,5). VGLUT1 and VGLUT2 are the most abundant isoforms. VGLUT1 is expressed in the cortex, hippocampus, and cerebellar cortex, while VGLUT2 is mostly found in the thalamus (6,7). VGLUT3 is expressed in hair cells of the auditory system (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glutaminase catalyzes the conversion of glutamine to glutamate, the first and rate-limiting step of glutaminolysis (1). Both kidney-type glutaminase (GLS1) and liver-type glutaminase (GLS2) are found in mammals (2). GLS1-mediated glutathione synthesis plays an essential role in redox homeostasis and contributes to increased survival of postimplantation bone cells preconditioned to the hypoxic and ischemic environment in the bone defect site (3). In addition, KEAP1–NRF2-mutant LUAD (KRAS-mutant lung adenocarcinoma) tumors are dependent on increased glutaminolysis (1). Furthermore, recent studies showed higher glutaminolysis and glucose production from glutamine in human primary hepatocytes with GLS2 gain-of-function missense mutations (4). These findings suggest GLS1 and GLS2 as potential targets in the therapy of bone regeneration and in the treatments to diseases such as cancer and hyperglycemia, respectively (1, 3-4).

$327
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Cyclin Dependent Kinase 10 (CDK10) is a Cdc2-related protein kinase that binds to and inhibits the transactivation activity of the transcription factor Ets2 (1).CDK10 is activated by cyclin M, which is mutated and unable to activate CDK10 in the human developmental disorder, STAR syndrome. Phosphorylation of Ets2 by CDK10/Cyclin M leads to degradation of Ets2 by the proteasome (2). CDK10 also plays a role in the development of the zebrafish nervous system (3). Studies have shown that expression of CDK10, which is modulated by promoter hypermethylation, is decreased in human cancer (4-6). Further, studies show that CDK10 expression in breast cancer affects response to tamoxifen (7), and is correlated with disease progression (8). CDK10 regulates the expression of c-RAF, and signaling through the MAPK pathway (2-3, 6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Mixed-lineage kinases (MLKs) belong to the mitogen activated kinase kinase kinase (MAPKKK) family of dual-specificity protein kinases. While not particularly well conserved at the sequence level, MLK1, 2 and 3 share a conserved domain structure consisting of a catalytic core and two isoleucine/leucine zipper motifs among other protein-protein binding domains (1). MLK1 preferentially stimulates the JNK (c-Jun amino-terminal kinase) pathway in response to agonists and stress (2). Although multiple phosphorylation events are required for full activation of MLK1, two autophosphorylation sites within the activation loop (Ser308 and Thr312) appear to be the predominant activation residues (3). In neuronal cells, MLK1 appears to function downstream of the small G-proteins Rac1 and Cdc42 and upstream of MKK4 and MKK7 to promote apoptosis (2).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Tripartite motif-containing protein 29 (TRIM29, ATDC) was isolated as a candidate gene by its ability to complement the radiosensitivity defect of an ataxia-telangiectasia (AT) cell line (1). This putative transcription regulator belongs to the TRIM (tripartite motif) protein family that is characterized by highly conserved amino-terminal RING finger, B-box, and coiled-coil domains. The TRIM29 protein binds and sequesters cytosolic p53, repressing expression of p53 target genes including p21 and Noxa by preventing p53 from entering the nucleus. Expression of TRIM29 inhibits p53 function and results in increased cell proliferation. (2). TRIM29 enhances tumor growth and metastasis in vivo and high TRIM29 levels are seen in most invasive pancreatic cancers. The oncogenic effect of TRIM29 appears to require β-catenin as expression of both proteins is elevated in pancreatic cancer cell lines and tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine kinase closely related to Akt (1). SGK is rapidly induced in response to a variety of stimuli, including serum, glucocorticoid, follicle stimulating hormone, osmotic shock, and mineralocorticoids. SGK activation can be accomplished via HGF PI3K-dependent pathways and by integrin-mediated PI3K-independent pathways (2,3). Induction and activation of SGK has been implicated in activating the modulation of anti-apoptotic and cell cycle regulation (4-6). SGK also plays an important role in activating certain potassium, sodium, and chloride channels, suggesting its involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion (2). SGK is negatively regulated by ubiquitination and proteasome degradation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: The Ca2+/calmodulin-dependent kinase (CaMK) family, which is activated in response to elevation of intracellular Ca2+, includes CaMKI, CaMKII, CaMKIV and CaMK-kinases (CaMKKs) (1,2). CaMKI is a downstream substrate of CaMKK and has 4 isoforms: CaMKI-α, CaMKI-β, CaMKI-γ and CaMKI-δ. CaMKI is present in most cell types and may be involved in cellular functions including transcription, cytoskeletal organization, axonal growth cone motility and long-term potentiation in neurons (3-6). CaMKII is also ubiquitously expressed in most cell types. While muscular CaMKII has been linked to activation of mitochondrial biogenesis in muscle hypertrophy response, neuronal CaMKII regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory and gene expression (7). Like CaMKI, CaMKIV is also a substrate of CaMKKs and is primarily restricted to the nucleus of neurons. CaMKIV regulates gene transcription in neurons through phosphorylation of transcription factors such as CREB and is required for fear memory (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cold-induced RNA-binding protein (CIRBP) is a 172-residue, multifunctional sensor protein that was first isolated as a protein induced in mouse fibroblasts cultured at 32ºC (1). Conversely, CIRBP expression decreases in cells or tissues subjected to increased temperature (2). The CIRBP protein is composed of an amino-terminal RNA-binding domain and a carboxyl-terminal, glycine-rich domain (1). Stressful stimuli, such as hypoxia, heat shock, osmotic shock, or oxidative conditions, lead to translocation of CIRBP from the nucleus to cytoplasmic stress granules through a mechanism involving CIRBP methylation-dependent nuclear export (3). CIRBP plays a role in regulating apoptosis and preserving the stemness of neural stem cells at moderately low temperatures (4). Research studies demonstrate that CIRBP contributes to the regulation of circadian rhythm through post-translational modulation of CLOCK expression (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TWEAK (TNFSF12/Apo-3L) is a member of the TNF superfamily of cytokines that are typically involved in immune regulation, inflammation, and apoptosis (1,2). TWEAK mRNA is expressed in a variety of tissues and cell lines, with higher levels observed in the heart, brain, skeletal muscle and within the immune system (1). Like other family members TWEAK is a type II transmembrane protein that can also be proteolytically processed to form a soluble cytokine. Soluble TWEAK is a weak inducer of apoptosis in some cell lines (1). The receptor for TWEAK, known as TWEAKR or fibroblast growth factor inducible 14 (Fn14), is a relatively small member of the TNF receptor family (3). TWEAK signaling has been associated with apoptosis, proliferation, migration, angiogenesis, and inflammation (4). Recent studies have suggested some therapeutic potential of TWEAK and its receptor signaling in regards to autoimmunity, cancer, and vascular injury (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Src associated in mitosis 68 kDa (SAM68) is a member of the signal transduction and activation of RNA (STAR) family of RNA binding proteins (1,2). SAM68 is a multi-functional protein with roles in signal transduction, cell cycle regulation, transcription, and alternative splicing (1-3). SAM68 acts as a scaffold protein mediating responses to various stimuli that activate receptors, such as the T-cell receptor and the insulin receptor, linking activation of various signal transduction pathways with post-transcriptional gene regulation (3). SAM68 is a target for phosphorylation by Src-related kinases and Erk1/2 mitogen-activated protein kinases. Phosphorylation of SAM68 regulates both its affinity for RNA and alternative splicing of RNAs like CD44 receptor mRNA (1,4). Many of the activities of SAM68 and its targets for alternative splicing have been implicated in the development and progression of spinal muscular atrophy and cancers such as prostate and breast carcinomas, where SAM68 is frequently upregulated (1,5-8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CD34 (ICO115) Mouse mAb #3569.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD34 is a type I transmembrane glycophosphoprotein expressed by hematopoietic stem/progenitor cells, vascular endothelium and some fibroblasts (1). CD34 expression has been the hallmark used to identify hematopoietic stem cells for many years. CD34+ hematopoietic stem cells expand and differentiate into all the lymphohematopoietic lineages upon cytokine or growth factor stimulation and lose CD34 expression upon differentiation. However, recent studies performed in various laboratories conflict with that convention (2). The extracellular domain of CD34 is homologous to CD43, a protein involved in cell-cell adhesion, and CD34 has been shown to function as a negative regulator of cell adhesion (3). CD34 associates with CrkL but not CrkII, is a substrate for PKC, and activation of PKC is coupled with surface expression of CD34 (1,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Echinoderm microtubule-associated protein-like 4 (EML4) is a 120 kDa microtubule-associated WD-repeat protein of the echinoderm microtubule-associated protein family (1). The expression of EML4 is necessary for correct intracellular microtubule network formation (2). EML4 protein expression is upregulated during mitosis and downregulated during the remaining cell cycle (1). During mitosis, EML4 is heavily phosphorylated and is associated with the mitotic spindle (2). The amino-terminal segment of EML4 is essential for microtubule association and function.

$489
96 assays
1 Kit
The PathScan® Total HER4/ErbB4 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of HER4/ErbB4 protein. A HER4/ErbB4 rabbit mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-HER4/ErbB4 proteins are captured by the coated antibody. Following extensive washing, a HER4/ErbB4 mouse antibody is added to detect both the captured phospho- and nonphospho-HER4/ErbB4 proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of HER4/ErbB4 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Research studies have implicated the HER/ErbB receptor tyrosine kinase family in normal development, cardiac function and cancer (1,2). HER4/ErbB4, like other family members, has four ectodomains, a single transmembrane domain and a cytoplasmic tail containing the active tyrosine kinase domain (3). By binding to neuregulins and/or EGF family ligands, ErbB4 forms either a homodimer or heterodimer with other ErbB family members, which results in receptor activation and signaling (3). ErbB4 is ubiquitously expressed with the highest expression occurring in brain and heart. The expression of ErbB4 in breast cancer, pediatric brain cancer and other types of carcinomas has been reported in research studies suggesting that ErbB4 expression is involved in both normal tissue development and carcinogenesis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rhodopsin is the photoreceptor in the retinal rods. It is activated by photons, transduces visual information through its cognate G protein, transducin, and is inactivated by arrestin binding (1). Using atomic-force microscopy, rhodopsin was found to be arranged into paracrystalline arrays of dimers in mouse disc membranes (2). Rhodopsin is considered to be the prototype of G protein-coupled receptors (GPCRs), and is the first GPCR for which a crystal structure was solved (3). Research studies have linked mutations in the gene encoding rhodopsin to retinitis pigmentosa (4,5), a disease characterized by retinal degeneration resulting in reduced peripheral vision and night blindness (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Enhancer of mRNA decapping 3 (EDC3) was originally identified from Saccharomyces cerevisiae as a protein essential to mRNA decapping prior to 5’-3’ mRNA degradation (1). In human cells, EDC3 is found within cytoplasmic processing (P) bodies as part of complexes that include DCP1, DCP2, EDC4/Ge-1, and DDX6/RCK (2). EDC3 and DCP2 interact with TTP, an activator of AU-rich-element (ARE)-mediated decay pathway, to promote decapping and degradation of ARE mRNA (2). In addition, research studies indicate that EDC3 may play a role in the premature termination of RNA polymerase II transcription (3).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin)

Background: Fascin is a monomeric, globular protein that plays a central role in regulating the structure and function of the cortical actin cytoskeleton (1). Fascin promotes cross-linkage of parallel actin filaments during the formation of cell protrusions (lamellipodia and filopodia), and therefore plays an important role in regulating cell migration (2). It has been reported that fascin may also regulate filopodia formation by a mechanism independent of its actin-bundling functions (3), though less is known about this mechanism of action. Research studies have shown that increased fascin expression is associated with increased motility and invasiveness of neoplastic cells, including breast, colon, prostate, and esophageal squamous cell carcinomas (4-6). Fascin binds to the armadillo-repeat domain of β-catenin in vitro and in vivo, and has been shown to co-localize with β-catenin and cadherins at the leading edge of migratory cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Both the NEDD8 ultimate buster 1 (NUB1) and the related NUB1L isoform are interferon-inducible adaptor proteins that negatively regulate ubiquitin-like protein NEDD8 (1,2). NUB1 protein contains an amino terminal ubiquitin-like (UBL) domain and multiple carboxy terminal ubiquitin-associated (UBA) domains. The NUB1L isoform is generated by alternative splicing and contains an extra UBA domain relative to NUB1 (2). Research studies indicate that NUB1 and NUB1L non-covalently bind NEDD8 and facilitate delivery of both NEDD8 monomers and NEDD8 conjugates to the proteasome for degradation (2-5). In addition, NUB1L binds and enhances the proteasomal degradation of the FAT10 ubiquitin-like protein (6). Additional research shows that NUB1 negatively regulates cell proliferation, likely due to inhibition of NEDD8 conjugation to SCF ubiquitin ligases, which leads to inhibition of p27 and cyclin E ubiquitination (3,7). NUB1 has been identified as a putative therapeutic target in Huntington's disease as NUB1 promotes a decrease in levels of mutant HTT protein (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Thrombopoietin receptor (TPOR, c-Mpl) is a hematopoietic receptor that binds the growth factor, thrombopoietin (TPO), responsible for regulation of platelet production (1-3). Expression of TPOR by megakaryocytes is required for megakaryocyte growth and development (4). TPOR is also expressed by hematopoietic stem cells and is required for stem cell maintenance and expansion (5). Studies show that mice lacking either TPOR or TPO have severely reduced numbers of platelets and megakaryocytes as well as decreased numbers of other hematopoietic lineages (4,5). Binding of TPO to TPOR induces receptor dimerization that leads to phosphorylation and activation of the tyrosine kinase Jak2. Activated Jak2 associates with the cytoplasmic domain of TPOR (6,7) and phosphorylates TPOR at Tyr626 and Tyr631 (8). These phosphorylated tyrosine residues provide docking sites for downstream signaling molecules including Stat3, Stat5, Shc, and SHIP (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Death associated protein 1 (DAP1) is a 15 kDa protein that functions as a positive mediator of cell death initiated by interferon-gamma (1, 2). The DAP1 protein is proline rich and possesses one SH3 binding motif, as well as several consensus protein kinase phosphorylation sites (1). The protein is localized in the cytoplasm, but the detailed mechanism of its proapoptotic function is unclear. Death associated protein 3 (DAP3) is widely expressed, and the expression is upregulated during membrane receptor-mediated apoptosis. In interferon-gamma- and Fas-induced apoptosis, DAP3 acts as a positive mediator, functioning downstream of the receptor signaling complex and upstream of the effector caspases (3,4). Death associated protein 5 (DAP5) is a 97 kDa protein with a high degree of amino acid sequence homology to eukaryotic translation initiation factor 4G (Elf4G) (1,5). Compared with elF4G, DAP5 lacks the amino-terminal region necessary for cap-dependent translation, and has a unique carboxy-terminal region that functions as a regulator of interferon-gamma-induced cell death (5,6). During induction of apoptosis, DAP5 is cleaved at aspartic acid 790. The carboxy-terminal truncated form of DAP5 functions as a cap-independent translation initiation factor responsible for the mediation of its own translation during apoptosis (7).