Microsize antibodies for $99 | Learn More >>

Product listing: NUP98 (C39A3) Rabbit mAb (Alexa Fluor® 647 Conjugate), UniProt ID P52948 #13393 to MSL2 (D4V2N) Rabbit mAb, UniProt ID Q9HCI7 #44006

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated NUP98 (C39A3) Rabbit mAb #2598.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Apolipoproteins are plasma lipoproteins that function as transporters of lipids and cholesterol in the circulatory system. Chylomicrons are a fundamental class of apolipoproteins containing very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL) (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Adherens junctions are dynamic structures that form cell-cell contacts and are important in development, differentiation, tissue integrity, morphology and cell polarity. They are composed of the transmembrane proteins, cadherins, which bind cadherins on adjacent cells in a calcium-dependent manner. On the cytoplasmic side of adherens junctions, the classic model states that cadherins are linked to the cytoskeleton through β- and α-catenin. α-E-catenin is ubiquitously expressed, α-N-catenin is expressed in neuronal tissue, and α-T-catenin is primarily expressed in heart tissue. Research studies have demonstrated that loss of E-cadherin and α-E-catenin occurs during the progression of several human cancers, indicating that the breakdown of adherens junctions is important in cancer progression (reviewed in 1).Research studies also suggest that, rather than acting as a static link between cadherins and actin, α-catenin regulates actin dynamics directly, possibly by competing with the actin nucleating arp2/3 complex (2,3). α-catenin also plays a role in regulating β-catenin-dependent transcriptional activity, affecting differentiation and response to Wnt signaling. α-catenin binds to β-catenin in the nucleus, preventing it from regulating transcription, and levels of both proteins appear to be regulated via proteasome-dependent degradation (4).

$377
300 units
DyLight™ 350 Phalloidin allows researchers to fluorescently label the cytoskeleton through the binding of phalloidin to F-actin. This product is not intended for use on live cells due to the toxicity associated with phalloidin. After reconstitution the stock solution provides enough material to perform 50 assays based on a 1:10 dilution and a 100 μl assay volume.DyLight™ 350 Fluorescent Properties: Excitation: 356nm, Emission: 423nm.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Keratins (cytokeratins) are intermediate filament proteins that are mainly expressed in epithelial cells. Keratin heterodimers composed of an acidic keratin (or type I keratin, keratins 9 to 23) and a basic keratin (or type II keratin, keratins 1 to 8) assemble to form filaments (1,2). Keratin isoforms demonstrate tissue- and differentiation-specific profiles that make them useful as research biomarkers (1). Research studies have shown that mutations in keratin genes are associated with skin disorders, liver and pancreatic diseases, and inflammatory intestinal diseases (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).

$489
96 assays
1 Kit
The PathScan® Total Bmi1 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Bmi1 protein. A Bmi1 mouse mAb has been coated onto the microwells. After incubation with cell lysates, the Bmi1 proteins are captured by the coated antibody. Following extensive washing, a Bmi1 rabbit detection mAb is added to detect captured Bmi1 proteins. Anti-rabbit, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of Bmi1 protein.Antibodies in the kit are custom formulations specific to the kit.
REACTIVITY
Human, Monkey, Mouse

Background: The polycomb group (PcG) of proteins contributes to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. This histone methyl-transferase activity requires the Ezh2, Eed, and Suz12 subunits of the complex (5). Histone H3 methylation at Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (6). Bmi1 is a component of the PRC1 complex, which together with Ring1 strongly enhances the E3 ubiquitin ligase activity of the Ring2 catalytic subunit (7). Bmi1 plays an important role in the regulation of cell proliferation and senescence through repression of the p16 INK4A and p19 ARF genes and is required for maintenance of adult hematopoietic and neural stem cells (3,4,8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: PHD finger protein 8 (PHF8) is a histone lysine demethylase that functions as a transcriptional activator by specifically demethylating a number of repressive histone methylation marks: mono- and di-methyl-histone H3 Lys9 (H3K9me1 and H3K9me2), di-methyl-histone H3 Lys27 (H3K27me2) and mono-methyl-histone H4 Lys20 (H4K20me1). PHF8 contains an N-terminal zinc finger-like PHD domain that binds tri-methylated histone H3 Lys4 (H3K4Me3) and a C-terminal jumonji domain that is responsible for the demethylase activity (1). Deletion and point mutations (F279S) in the jumonji domain of PHF8 are associated with the onset of X-linked mental retardation (XLMR). In addition, PHF8 is highly expressed in prostate cancer, laryngeal squamous cell carcinoma, and human non-small-cell lung cancer (NSCLC). Its expression is predictive of poor survival (2-4). Overexpression of PHF8 increases cell proliferation and cell motility, while silencing of PHF8 reduces cell proliferation, migration, and invasion (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The modulation of chromatin structure is an essential component in the regulation of transcriptional activation and repression. Modifications can be made by at least two evolutionarily conserved strategies, through the disruption of histone-DNA contacts by ATP-dependent chromatin remodelers, or by histone tail modifications including methylation and acetylation. One of the four classes of ATP-dependent histone remodelers is the SWI/SNF complex, the central catalytic subunit of which is Brg1 or the highly related protein hBRM (1). This SWI/SNF complex contains varying subunits but its association with either Brg1 or hBRM remains constant (1). SWI/SNF complexes have been shown to regulate gene activation, cell growth, the cell cycle and differentiation (1). Brg1/hBRM have been shown to regulate transcription through enhancing transcriptional activation of glucocorticoid receptors (2). Although usually associated with transcriptional activation, Brg1/hBRM have also been found in complexes associated with transcriptional repression including with HDACs, Rb and Tif1β (3-5). Brg1/hBRM plays a vital role in the regulation of gene transcription during early mammalian embryogenesis. In addition, Brg1/hBRM also play a role as a tumor suppressors and Brg1 is mutated in several tumor cell lines (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Eph receptors are the largest known family of receptor tyrosine kinases (RTKs). They can be divided into two groups based on sequence similarity and on their preference for a subset of ligands. While EphA receptors bind to a glycosylphosphatidylinositol-anchored ephrin A ligand, EphB receptors bind to ephrin B proteins that have a transmembrane and cytoplasmic domain (1,2). Research studies have shown that Eph receptors and ligands may be involved in many diseases including cancer (3). Both ephrin A and B ligands have dual functions. As RTK ligands, ephrins stimulate the kinase activity of Eph receptors and activate signaling pathways in receptor-expressing cells. The ephrin extracellular domain is sufficient for this function as long as it is clustered (4). The second function of ephrins has been described as "reverse signaling", whereby the cytoplasmic domain becomes tyrosine phosphorylated, allowing interactions with other proteins that may activate signaling pathways in the ligand-expressing cells (5).The EphA1 receptor preferentially binds ephrin-A1 as a ligand (6). This ligand-receptor interaction stimulates EphA1 signaling and regulates cell morphology and motility through the ILK-RhoA-ROCK pathway (7). The EphA1 gene has been associated with late-onset Alzheimer's diseases (8,9). The role of EphA1 in cancer development falls into two opposite categories. In some type of cancer such as prostate, gastric and liver cancer, high expression of EphA1 associates with cancer metastasis and invasion (10-12). For other types of cancers, such as colon cancer and nonmelanoma skin cancer, down-regulation of the protein correlates with cancer development (13,14). The bidirectional signaling modulation of Ephrin-Ephrin receptor interaction might contribute this paradox phenomena (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The NDRG (N-Myc downstream-regulated gene) family consisting of NDRG1, NDRG2, NDRG3, and NDRG4 are structurally related proteins with roles in cell proliferation, differentiation, apoptosis, stress responses, and cell migration/metastasis (1-3). NDRG1 was originally identified as a protein that was upregulated in N-Myc knockout mice (1). Proteins in the NDRG family, particularly NDRG1 and NDRG2, have been reported to be down-regulated in various cancer tissues and have been suggested to function as a tumor suppressors (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The Elongin complex is a heterotrimer composed of TCEB3/Elongin A, Elongin B (TCEB2), and Elongin C (TCEB1) subunits (1-3). The Elongin complex regulates the rate of RNA polymerase II (RNAPII) transcription elongation by releasing the transient pausing of RNAPII at multiple sites along the DNA. TCEB3/Elongin A is the transcriptionally active subunit, while Elongin B and C subunits play a regulatory role (3,4). TCEB3/Elongin A may be required for expression of a subset of cell cycle regulated genes, and embryonic stem (ES) cells lacking TCEB3/Elongin A show abnormalities in cell size, growth, and cell cycle distribution (5). In addition, the Elongin complex has been shown to interact with the cullin family and RING finger proteins Cul5/Rbx2 upon UV-induced DNA damage, removing arrested RNAPII at sites of DNA damage by ubiquitination and degradation as part of an E3 ubiquitin ligase (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Interferon-stimulated 15 kDa protein (ISG15), also known as ubiquitin cross-reactive protein (UCRP), is a member of the ubiquitin-like protein family and functions in various biological pathways from pregnancy to innate immune responses (1). Expression of ISG15 is stimulated by cellular exposure to type 1 interferons α and β, in addition to infection with viruses such as influenza B (2,3). After exposure to type I interferons, both lymphocytes and monocytes, in addition to some fibroblasts and epithelial cells, release ISG15 into culture medium (1,4). ISG15 has been shown to function as a cytokine, stimulating interferon γ secretion by monocytes and macrophages, proliferation of natural killer cells, and chemotactic responses in neutrophils (4,5). ISG15 has also been shown to function intracellularly, being covalently conjugated to other proteins by E1 (Ube1L), E2 (UbcH8) and E3 ligases via a multi-step process analogous to ubiquitination (6,7). ISG15 is removed from proteins by the ubiquitin processing protease Ubp43 (8). ISG15-protein conjugation (ISGylation) is induced by type 1 interferons, and target proteins include the serine protease inhibitor Serpin 2A, PLCγ1, ERK1/2, Jak1 and Stat1 (9,10). Unlike ubiquitination, ISGylation does not target proteins for degradation, rather ISGylation increases Jak1 and Stat1 activity, enhancing the cellular response to interferons (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Complexins are small soluble proteins composed of a central α-helical-structured domain surrounded by amino- and carboxy-terminal unstructured domains (1). These cytosolic proteins bind to t-SNAREs with low affinity and to assembled SNARE complexes with high affinity (1,2). Two isoforms, complexin-1 and complexin-2, are expressed in neuronal cells (3) where they regulate evoked and spontaneous exocytosis (4,5). Altered complexin expression resulting from RNAi-mediated knockdown (6) or gene invalidation (7) leads to alteration in spontaneous fusion events and neurotransmitter release, which reflects functions at both inhibitory and stimulatory synapses.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Filamins are a family of dimeric actin binding proteins that function as structural components of cell adhesion sites. They also serve as a scaffold for subcellular targeting of signaling molecules (1). The actin binding domain (α-actinin domain) located at the amino terminus is followed by as many as 24 tandem repeats of about 96 residues and the dimerization domain is located at the carboxy terminus. In addition to actin filaments, filamins associate with other structural and signaling molecules such as β-integrins, Rho/Rac/Cdc42, PKC and the insulin receptor, primarily through the carboxy-terminal dimerization domain (1-3). Filamin A, the most abundant, and filamin B are widely expressed isoforms, while filamin C is predominantly expressed in muscle (1). Filamin A is phosphorylated by PAK1 at Ser2152, which is required for PAK1-mediated actin cytoskeleton reorganization (4).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Androgen Receptor (D6F11) XP® Rabbit mAb #5153.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Androgen receptor (AR), a zinc finger transcription factor belonging to the nuclear receptor superfamily, is activated by phosphorylation and dimerization upon ligand binding (1). This promotes nuclear localization and binding of AR to androgen response elements in androgen target genes. Research studies have shown that AR plays a crucial role in several stages of male development and the progression of prostate cancer (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MRP3/ABCC3 belongs to the super family of ATP-binding cassette (ABC) transporters. It is a member of the MRP subfamily that is expressed in various organs including liver, gallbladder, small intestine, colon, kidney, and adrenal gland (1-3). MRP3 is involved in multi-drug resistance (1). It facilitates the efflux of organic anions including monoanionic bile acid and anti-cancer reagents such as etoposide and paclitaxel from liver and small intestine into blood (4-7). Expression of MRP3 is increased in the cholestatic human and rat liver, suggesting its role in cholehepatic and enterohepatic bile circulation and in protecting liver from toxic bile salts (2,8). MRP3 expression is also upregulated in people with Dubin-Johnson Syndrome (DJS) who lack functional MRP2 in the liver, which implicates the compensatory role of MRP3 in the absence of functional MRP2 (4).Elevated expression of MRP3 has been detected in various cancer types such as hepatocellular carcinomas, primary ovarian cancer, and adult acute lymphoblastic leukemia (ALL) (9-11). Overexpression of MRP3 was reported to be a prognostic factor in ALL and adult acute myeloid leukemia (AML) (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Caveolae ("little caves") are 60-80 nm pits representing specialized plasma membrane domains in many cell types. The principal protein component of caveolae is caveolin, a small integral membrane protein composed of three family members, including the widely expressed caveolin-1 and -2, and the muscle-specific caveolin-3 (1). Caveolin proteins are required for caveolae formation and serve as scaffolding proteins for the recruitment of signaling proteins. Research studies in cavelolin-deficient mice implicate cavelolin proteins in several pathologies, including diabetes, cancer, cardiovascular diseases, atherosclerosis, pulmonary disease, and muscular dystrophies (2).The cavin proteins (cavin-1, -2, -3, and -4 in mammals) are a family of caveolae-associated integral membrane proteins involved in the biogenesis and stability of caveolae. Cavin proteins form homo- or hetero-oligomers whose composition is tissue-specific, which may confer distinct functions of caveolae in various tissues (3). Cavin-1 (PTRF), which is widely expressed, is required for caveolae formation and is thought to play roles in lipid metabolism, adipocyte differentiation, and IGF-1 receptor signaling (4-6). Research studies involving prostate cancer suggest that expression of cavin-1 is related to tumor progression and angiogenesis/lymphangiogenesis (7-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Centromere-associated protein E (CENP-E) is a kinesin-like motor protein and mitotic-checkpoint kinase BUB1B binding partner that is essential for establishing and maintaining stable attachments between mitotic chromosomes and spindle microtubules (1). CENP-E plays an important role as a motor protein in the alignment of chromosomes during prometaphase (2). Research studies indicate that CENP-E protein expression peaks in late G2 and M-phases of the cell cycle before the protein is degraded at mitotic exit (3). Additional studies show that the loss of CENP-E function results in cell cycle arrest in mitosis. Mutations in the corresponding CENPE gene can result in autosomal recessive primary microcephaly-13, a developmental disorder characterized by small head circumference, dysmorphic facial features, short stature, and delayed psychomotor development (4). Since CENP-E is essential for mitotic progression and is required for cellular proliferation, it has become an interesting target for cancer therapy (5-7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CUB domain containing protein 1 (CDCP1, SIMA135) is a putative stem cell marker shown in research studies to be highly expressed in some human cancer cells and in both typical and atypical (cancerous) colons (1). Expression of CDCP1 may be epigenetically regulated, as methylation of promoter CpG sequences results in decreased CDCP1 expression (2). The corresponding CDCP1 gene encodes a glycoprotein that acts as a complex, multidomain transmembrane antigen. CDCP1 has three extracellular CUB domains that may be involved in cell adhesion or extracellular matrix interactions (1,3). Src-family kinases may phosphorylate CDCP1 at five tyrosine residues within its cytoplasmic domain to provide a potential binding site for SH2 domain-containing proteins (3). CDCP1 is a putative hematopoietic stem cell marker (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: DNA double-strand breaks (DSBs) are potentially hazardous lesions that can be induced by ionizing radiation (IR), radiomimetic chemicals, or DNA replication inhibitors. Melanoma associated antigen (mutated) 1 (MUM1, EXPAND1) is a PWWP-domain containing chromatin binding protein involved in maintaining chromatin architecture of interphase chromosomes. In response to DNA damage, EXPAND1/MUM1 accumulates at sites of DNA double strand breaks through direct interaction with DNA repair factor 53BP1 (1). Accumulation of EXPAND1/MUM1 at damaged DNA sites is thought to modify the structure of the chromatin and allow access to other DNA repair factors (2). 53BP1 activates the checkpoint kinase ATM and promotes DNA double strand break repair via nonhomologous end joining (NHEJ) repair pathway (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb #9709.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SMARCAL1 was first identified as a ubiquitously expressed member of the SNF2 family with homology to the E. coli protein HepA (1). Mutations in the gene encoding SMARCAL1 were subsequently shown to be the cause of Schimke immuno-osseous dysplasia (SIOD), an autosomal recessive disorder characterized by phenotypes in multiple systems, including spondyloepiphyseal dysplasia, renal dysfunction, immunodeficiency, and impaired neurological function (2). Researchers have also associated SMARCAL1 deficiency with predisposition to non-Hodgkin's lymphoma (3). The array of phenotypes associated with SMARCAL1 is likely due to its role as an annealing helicase in the DNA damage response. During DNA replication stress, SMARCAL1 is phosphorylated by DNA repair kinases (ATM, ATR, DNA-PK) (4). SMARCAL1 deficiency sensitizes cells to replication stress agents, and appears to increase the frequency of replication fork breakdown (4,5). SMARCAL1 is also required for efficient DNA double strand break repair via the nonhomologous end joining (NHEJ) DNA repair pathway (6). Researchers have suggested that inhibitors targeting SMARCAL1 may be effective in sensitizing cancer cells to chemotherapeutic agents (reviewed in 7).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tuberin/TSC2 (D93F12) XP® Rabbit mAb #4308.
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor development (1). Mutations in either TSC2 or the related TSC1 (hamartin) gene cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by development of multiple, widespread non-malignant tumors (2). Tuberin is directly phosphorylated at Thr1462 by Akt/PKB (3). Phosphorylation at Thr1462 and Tyr1571 regulates tuberin-hamartin complexes and tuberin activity (3-5). In addition, tuberin inhibits the mammalian target of rapamycin (mTOR), which promotes inhibition of p70 S6 kinase, activation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translation initiation), and eventual inhibition of translation (3,6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TIE1 belongs to the Tie family of receptor tyrosine kinases. TIE1 is structurally similar to its homolog TIE2, but differs from the latter in that it does not have a known ligand and is thus considered an orphan receptor (1). A key function of TIE1 is to modulate TIE2 signaling, via heterodimerization with TIE2 at the cell surface (2). The effects of TIE1-TIE2 interaction are context-dependent; heterodimerization can either promote or inhibit downstream TIE2 signaling depending on localized TIE2 levels (3-6). Research studies have shown TIE1 to be implicated in angiogenesis, vascular maturation, tissue remodeling, and inflammation. Increased expression of TIE1 has also been associated with cancer stemness and atherosclerosis formation (7, 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Male-specific lethal 2-homolog (MSL2) is a component of the male-specific lethal (MSL) histone acetyltransferase complex, which contains MSL1, MSL2, MSL3, and MYST1. MYST1, also known as mammalian male absent on the first (MOF) and lysine acetyltransferase 8 (KAT8), is a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (1,2) and functions as the catalytic subunit of the MSL complex. The MSL complex is responsible for the majority of acetylation on histone H4 lysine 16 (3-5). In addition, as part of the MSL complex, MSL1 and MSL2 function as an E3 ubiquitin ligase to mono-ubiquitylate histone H2B on lysine 34 (6). The MSL complex plays a critical role in the regulation of transcription, DNA repair, autophagy, apoptosis, and embryonic stem cell pluripotency and differentiation (1,2,6,7). Loss of MSL activity leads to a global reduction in histone H4 lysine 16 acetylation, a common hallmark found in many human cancers. In particular, the reduction of MYST1 protein levels and histone H4 lysine 16 acetylation is associated with poor prognosis in breast, renal, colorectal, gastric, and ovarian cancers (1).