Microsize antibodies for $99 | Learn More >>

Product listing: ZIP7/SLC39A7 (D1O3A) Rabbit mAb, UniProt ID Q92504 #33176 to SignalSilence® KEAP1 siRNA II, UniProt ID Q14145 #5289

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The solute carrier family 39 (zinc transporter) member 7 (SLC39A7, ZIP7) is an ER and Golgi membrane protein that regulates cellular zinc homeostasis by controlling release of zinc from these organelles to the cytoplasm (1,2). Zinc release mediated by ZIP7 results in activation of protein kinases that are involved in cell proliferation and migration (3,4). The protein kinase CK2 phosphorylates and activates ZIP7 in response to extracellular signals, such as growth factor stimulation (4,5). Increased expression of ZIP7 is observed in breast cancer tissues (6). Research studies indicate that ZIP7 is responsible for activation of multiple tyrosine kinases in aggressive, tamoxifen-resistant breast cancer (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) were first identified as molecules that can induce ectopic bone and cartilage formation (1,2). BMPs belong to the TGF-β superfamily, playing many diverse functions during development (3). BMPs are synthesized as precursor proteins and then processed by cleavage to release the C-terminal mature BMP. BMPs initiate signaling by binding to a receptor complex containing type I and type II serine/threonine receptor kinases that then phosphorylate Smad (mainly Smad1, 5, and 8), resulting in the translocation of Smad into the nucleus. BMP was also reported to activate MAPK pathways in some systems (3,4).

$364
400 µl
This Cell Signaling Technology (CST) antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Sepharose® Bead Conjugate) is useful for immunoprecipitation assays. The unconjugated Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060 reacts with human, mouse, rat, hamster, Drosophila melanogaster, bovine and zebrafish phospho-Akt protein. CST expects that Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Sepharose® Bead Conjugate) will also recognize phospho-Akt in these species.
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Hamster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunoprecipitation

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$262
3 nmol
300 µl
SignalSilence® Rictor siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit rictor expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase with two different complexes. One complex contains mTOR, GβL and raptor, which is a target of rapamycin. The other complex, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTOR-rictor complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). This complex has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: F3/contactin (CNTN, contactin 1) is a glycosylphosphatidylinositol (GPI)-anchored neural cell adhesion protein belonging to the immunglobulin protein superfamily (1). During early mammalian development, F3/contactin is expressed in granule neuronal progenitor (GNP) cells, where it was shown to promote GNP differentiation, in part by antagonizing sonic hedgehog (SHH)-mediated proliferation (2). Biochemical studies have shown that F3/contactin interacts with the phosphatase PTPRZ on the surface of oligodendrocyte precursor cells, an association that was shown to be essential for oligodendrocyte maturation (3). F3/contactin expression is also abundant in post-mitotic neurons, where its functions as a neural cell adhesion protein have been suggested to play an important role in synaptic plasticity and memory (4). Although primarily associated with neuronal development and function, F3/contactin expression has also been implicated in extra-neuronal tumorigenesis. For example, expression of F3/contactin was detected in both primary prostate tumors, and lymph node and bone metastases, while patient tumor samples with detectable F3/contactin expression were associated with tumor progression and reduced recurrance-free survival (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant for formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The JARID (Jumonji/AT-rich interactive domain-containing protein) family contains four members: JARID1A (also RBP2 and RBBP2), JARID1B (also PLU-1), JARID1C (also SMCX) and JARID1D (also SMCY) (4). In addition to the JmJC domain, these proteins contain JmJN, BRIGHT, C5HC2 zinc-finger, and PHD domains, the latter of which binds to methylated histone H3 (Lys9) (4). All four JARID proteins demethylate di- and tri-methyl histone H3 Lys4; JARID1B also demethylates mono-methyl histone H3 Lys4 (5-7). JARID1A is a critical RB-interacting protein and is required for Polycomb-Repressive Complex 2 (PRC2)-mediated transcriptional repression during ES cell differentiation (8). A JARID1A-NUP98 gene fusion is associated with myeloid leukemia (9). JARID1B, which interacts with many proteins including c-Myc and HDAC4, may play a role in cell fate decisions by blocking terminal differentiation (10-12). JARID1B is over-expressed in many breast cancers and may act by repressing multiple tumor suppressor genes including BRCA1 and HOXA5 (13,14). JARID1C has been found in a complex with HDAC1, HDAC2, G9a and REST, which binds to and represses REST target genes in non-neuronal cells (7). JARID1C mutations are associated with X-linked mental retardation and epilepsy (15,16). JARID1D is largely uncharacterized.

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same cross-reactivity as the unconjugated antibody (Jak2 (D2E12) XP® Rabbit mAb #3230).
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated VEGF Receptor 2 (D5B1) Rabbit mAb # 9698.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: C-reactive protein (CRP) is a pentraxin family protein involved in several host defense-related functions as a result of its ability to bind to foreign pathogens and damaged host cells (1). CRP is a cyclic, non-covalent pentameric protein and normal constituent of human sera that is produced primarily by hepatocytes (2). Secretion of CRP is induced by proinflammatory cytokines, including IL-6 and IL-1β, and significantly increases during acute phase responses to tissue injury, infection, or other inflammatory stimuli (3,4). The presence of CRP is often utilized as an inflammation marker, and monitoring CRP levels in plasma is a useful tool in assessing disease progression or treatment effectiveness. CRP is also regarded as a risk assessment factor for the development and progression of cardiovascular disease (5).CRP binds to phosphorylcholine that is present on the surface of damaged tissues and in the bacterial cell wall of certain pathogens (6). Through this calcium-dependent interaction, CRP promotes agglutination and initiates the activation of the complement cascade. This results in enhanced opsonization through CRP interaction with FcγRI and FcγRIIA, which facilitates phagocytosis (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Highly conserved and widely expressed plastin proteins comprise a subset of actin-binding proteins that include proteins that promote actin bundling. Three plastins exhibiting differential expression are found in mammals and include L-plastin, T-plastin, and I-plastin. T-plastin (plastin-3) is found in cells of most solid tissues, while I-plastin (plastin-1) is expressed specifically in the kidney, colon, and small intestine (1-3). Research studies have shown that L-plastin (plastin-2) or lymphocyte cytosolic protein 1 (LCP1) is mainly expressed in hematopoietic cells and nonhematopoietic tumors, and increased expression correlates with metastatic progression in colon cancer cell lines (4). Investigators have found that overexpression of LCP1 in premetastatic cancer cell lines induces invasion and loss of E-cadherin expression, which is characteristic of metastatic cancer cell lines (5). LCP1 becomes phosphorylated at Ser5 upon stimulation through the T cell receptor/CD3 complex in association with the CD2 cell adhesion molecule or the CD28 receptor (6). Phosphorylation at Ser5 enhances the ability of LCP1 to bind to F-actin and increases cell motility (7,8).

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: Bruton's tyrosine kinase (Btk) is a member of the Btk/Tec family of cytoplasmic tyrosine kinases. Like other Btk family members, it contains a pleckstrin homology (PH) domain and Src homology SH3 and SH2 domains. Btk plays an important role in B cell development (1,2). Activation of B cells by various ligands is accompanied by Btk membrane translocation mediated by its PH domain binding to phosphatidylinositol-3,4,5-trisphosphate (3-5). The membrane-localized Btk is active and associated with transient phosphorylation of two tyrosine residues, Tyr551 and Tyr223. Tyr551 in the activation loop is transphosphorylated by the Src family tyrosine kinases, leading to autophosphorylation at Tyr223 within the SH3 domain, which is necessary for full activation (6,7). The activation of Btk is negatively regulated by PKCβ through phosphorylation of Btk at Ser180, which results in reduced membrane recruitment, transphosphorylation, and subsequent activation (8). The PKC inhibitory signal is likely to be a key determinant of the B cell receptor signaling threshold to maintain optimal Btk activity (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Chromodomain-helicase-DNA-binding domain (CHD) proteins have been identified in a variety of organisms (1,2). This family of nine proteins is divided into three separate subfamilies: subfamily I (CHD1 and CHD2), subfamily II (CHD3 and CHD4), and subfamily III (CHD5, CHD6, CHD7, CHD8, and CHD9). All CHD proteins contain two tandem amino-terminal chromodomains, a SWI/SNF-related ATPase domain, and a carboxy-terminal DNA-binding domain (1,2). The chromodomains facilitate binding to methylated lysine residues of histone proteins and confer interactions with specific regions of chromatin. The SWI/SNF-related ATPase domain utilizes energy from ATP hydrolysis to modify chromatin structure. CHD proteins are often found in large, multiprotein complexes with their transcriptional activation or repression activity governed by other proteins within the complex. CHD3 (also known as Mi2-α) and CHD4 (also known as Mi2-β) are central components of the nucleosome remodeling and histone deacetylase (NuRD) transcriptional repressor complex, which also contains HDAC1, HDAC2, RBAP48, RBAP46, MTA1, MTA2, MTA3, and MBD3 (3-8). Both CHD3 and CHD4 contain two plant homeodomain (PHD) zinc finger domains that bind directly to HDAC1 and HDAC2.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Ras activity is regulated by GAP (GTPase activating proteins) and GEFs (guanine nucleotide exchange factors). Ras-GRF1 (also known as CDC25Mm) is neuronal RasGEF and is regulated by heterotrimeric G proteins and calcium influx (1,2). Binding to calmodulin and phosphorylation stimulate Ras-GRF1 activity (1,2). Multiple PKA phosphorylation sites on Ras-GRF have been identified. Phosphorylation on the two major sites, Ser54 and Ser822, inhibits Ras-GRF activity (3). Carbachol (a muscarinic agonist)-induced phosphorylation on Ser916 is essential but not sufficient for maximal Ras-GRF activity (4). It has been reported that Ras-GRF1 also shows GEF activity toward Rac after phosphorylation by the tyrosine kinase Src (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SLIT2 is an extracellular matrix-associated SLIT family member that functions as a ligand for roundabout (ROBO) family receptors (1). Activation of ROBO receptors by SLIT2 regulates various biological processes, including promoting cellular senescence via WNT inhibition (2), suppressing migration by enhanced β-catenin/E-cadherin association, regulating actin polymerization (4, 5), and suppressing cell proliferation induced by SDF1 and MCP1 (6, 7). In development, the SLIT-ROBO pathways play important roles in neuronal axon guidance, angiogenesis, and both kidney and mammary gland organogenesis. SLIT2 expression has been reported to suppress cancer cell growth, invasion, and metastasis, suggesting that modulation of SLIT2-ROBO signaling may have therapeutic potential in cancer biology (8, 9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Wiskott-Aldrich syndrome proteins (WASPs) mediate actin dynamics by activating the Arp2/3 actin nucleation complex in response to activated Rho family GTPases. In mammals, five WASP family members have been described. Hematopoietic WASP and ubiquitously expressed N-WASP are autoinhibited in unstimulated cells. Upon stimulation they are activated by cdc42, which relieves the autoinhibition in conjunction with phosphatidyl inositol 4,5-bisphosphate. Three WAVE (Wasf, SCAR) family proteins are similar in sequence to WASP and N-WASP but lack the WASP/N-WASP autoinhibition domains and are indirectly activated by Rac (reviewed in 1). Both WASP and WAVE functions appear to be essential, as knockout of either N-WASP or Scar-2 in mice results in cardiac and neuronal defects and embryonic lethality (2,3). Loss of WASP results in immune system defects and fewer immune cells (4). WAVE-2 (WASF2) is widely distributed, while WAVE-1 and WAVE-3 are strongly expressed in brain (5). WAVE-3 may act as a tumor suppressor in neuroblastoma, a childhood disease of the sympathetic nervous system (6). Increased expression of WAVE-3 is seen in breast cancer, and studies in breast adenocarcinoma cells indicate that WAVE-3 regulates breast cancer progression, invasion and metastasis through the p38 mitogen-activated protein kinase (MAPK) pathway (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: DRAK2 (DAP kinase related apoptosis inducing protein kinase 2) is a member of the novel DAP (death associated protein) pro-apoptotic kinase family (1). Overexpression of DRAK2 in NIH/3T3 cells induces morphological changes associated with apoptosis, which are likely to occur in a p53-dependent manner (1,2). DRAK2 is preferentially expressed in lymphoid tissues and regulates the TCR activation threshold during thymocyte selection (3). Indeed, T cells from DRAK2(-/-) mice exhibit enhanced sensitivity to T cell receptor-mediated stimulation and have a reduced requirement for co-stimulation (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain of several proteins has been shown to catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into seven separate families (3). The JMJD1 (Jumonji domain-containing protein 1) family, also known as JHDM2 (JmjC domain-containing histone demethylation protein 2) family, contains four members: hairless (HR), JMJD1A/JHDM2A, JMJD1B/JHDM2B, and JMJD1C/JHDM2C. Hairless is expressed in the skin and brain and acts as a co-repressor of the thyroid hormone receptor (4-6). Mutations in the hairless gene cause alopecia in both mice and humans (4,5). JMJD1A is expressed in meiotic and post-meiotic male germ cells, contributes to androgen receptor-mediated gene regulation, and is required for spermatogenesis (7-9). It has also been identified as a downstream target of OCT4 and STAT3 and is critical for the regulation of self-renewal in embryonic stem cells (10,11). JMJD1B is a more widely expressed family member and is frequently deleted in myeloid leukemia (12). JMJD1C (also known as TRIP8) is a co-factor of both the androgen and thyroid receptors and has a potential link to autism (13-15). Members of the JMJD1/JHDM2 family have been shown to demethylate mono-methyl and di-methyl histone H3 (Lys9) (3,8).

$320
100 µg
This peptide is used to block Phospho-Stat3 (Tyr705) (D3A7) rabbit mAb #9145 reactivity.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The Stat3 transcription factor is an important signaling molecule for many cytokines and growth factor receptors (1) and is required for murine fetal development (2). Research studies have shown that Stat3 is constitutively activated in a number of human tumors (3,4) and possesses oncogenic potential (5) and anti-apoptotic activities (3). Stat3 is activated by phosphorylation at Tyr705, which induces dimerization, nuclear translocation, and DNA binding (6,7). Transcriptional activation seems to be regulated by phosphorylation at Ser727 through the MAPK or mTOR pathways (8,9). Stat3 isoform expression appears to reflect biological function as the relative expression levels of Stat3α (86 kDa) and Stat3β (79 kDa) depend on cell type, ligand exposure, or cell maturation stage (10). It is notable that Stat3β lacks the serine phosphorylation site within the carboxy-terminal transcriptional activation domain (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SLK (Ste20-like Kinase) is a member of the germinal center kinase (GCK) family of proteins. SLK has a kinase domain located at the N terminus (1). The autophosphorylation of SLK at Thr183 and Ser189 is required for the upregulation of SLK kinase activity (1, 2). The protein also has a caspase cleavage site DXXD and a SH3 binding site PXXP located in the middle part of its sequence, and a regulatory C terminal coiled-coil domain for homodimerization and adaptor binding (1-4). SLK plays important roles in development, tissue regeneration and cancer cell migration by regulating several signaling pathways (5-7). SLK phosphorylates and activates ASK1 to induce downstream p38 phosphorylation and apoptosis (8,9). During cell cycle, SLK phosphorylates Polo-like kinase (PLK) at Thr210 to promote G2/M transition (10,11). SLK also promotes cell division by direct phosphorylation of ERMs and dynactin to activate microtubule reorganization and spindle orientation (12, 13). During focal adhesion and cell migration process, SLK is activated and colocalized to the focal adhesion complex where it promotes complex turnover by phosphorylating paxillin at Ser250 (14, 15).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Di-Methyl-Histone H3 (Lys4) (C64G9) Rabbit mAb #9725.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: JunB is a basic region, leucine zipper (bZIP) transcription factor belonging to the Jun family that includes c-Jun and JunD. Jun family members homodimerize or heterodimerize with Fos and ATF proteins to form a functional transcription factor AP-1 (activator protein 1), whose activity is regulated by a variety of physiological and pathological stimuli such as growth factors, infections, and stress signals (1-4). While JunB sometimes antagonizes c-Jun transcriptional activity, it may functionally substitute for c-Jun during development in mice (5-7). JunB regulates hematopoietic stem cell number and plays an important role in the pathogenesis of chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) (8,9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). It is generally activated by conditions of nutrient deprivation but is also associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and is directed by a number of autophagy-related (Atg) genes.Vacuolar trafficking and autophagy are controlled by the class III type phosphoinositide 3-kinase (PI3K) Vps34, which generates phosphoinositide-3-phosphate (PtdIns3P) (4,5). Atg18 and Atg21 are two related WD-repeat proteins that bind PtdIns3P via a conserved Phe-Arg-Arg-Gly motif (6,7). It has been shown that Atg18 binds to Atg2 and that this complex is directed to vacuolar membranes by its interaction with PtdIns3P (8). Human orthologs of Atg18 and Atg21 were identified as members of the WD-repeat protein Interacting with Phosphoinositides (WIPI) family (9-11). WIPI1 (also called WIPI49) and WIPI2 have been shown to translocate from several vacuolar compartments to LC3-positive autophagosomes during autophagy; this translocation may be used as an autophagy marker (12).

This peptide is used to specifically block Src Antibody #2108 and Src (36D10) Rabbit mAb #2109 reactivity.

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The centrosome is an organelle that plays an important role in the mammalian cell cycle. Prior to the onset of mitosis, the single interphase centrosome duplicates only once, creating a pair of daughter centrosomes that will form the two spindle poles after breakdown of the nuclear envelope. Failure to duplicate or overduplication of the centrosome can result in polyploidy and genomic instability (reviewed in 1). Centrosomal protein of 110 kDa (CP110) is a cyclin-dependent kinase (CDK) substrate that plays a critical role in promoting the duplication of centrosomes and correct spindle formation (2). In addition, CP110 has been shown to interact with calmodulin (CaM) and centrin to regulate the progression through cytokinesis (3), and with Cep97 and Cep290 to regulate the formation of primary cilia (4,5). CP110 expression is induced in G1/S with peak expression during S-phase. Degradation of CP110 is mediated by cyclin F in G2-phase and is required for normal progression into M-phase (6).

$118
10 western blots
100 µl
CREB Control Cell Extracts (SK-N-MC untreated): Total cell extracts from SK-N-MC cells serve as a negative control. Supplied in SDS sample buffer.CREB Control Cell Extracts (SK-N-MC +IBMX/Forskolin): Total cell extracts from SK-N-MC cells treated with 30 μM Forskolin #3828 and 0.5 mM IBMX for 30 minutes serve as a positive control. Supplied in SDS sample buffer.
APPLICATIONS

Application Methods: Western Blotting

Background: CREB is a bZIP transcription factor that activates target genes through cAMP response elements. CREB is able to mediate signals from numerous physiological stimuli, resulting in regulation of a broad array of cellular responses. While CREB is expressed in numerous tissues, it plays a large regulatory role in the nervous system. CREB is believed to play a key role in promoting neuronal survival, precursor proliferation, neurite outgrowth, and neuronal differentiation in certain neuronal populations (1-3). Additionally, CREB signaling is involved in learning and memory in several organisms (4-6). CREB is able to selectively activate numerous downstream genes through interactions with different dimerization partners. CREB is activated by phosphorylation at Ser133 by various signaling pathways including Erk, Ca2+, and stress signaling. Some of the kinases involved in phosphorylating CREB at Ser133 are p90RSK, MSK, CaMKIV, and MAPKAPK-2 (7-9).

$303
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: PZR (Protein zero related) is an immunoglobulin superfamily protein that specifically binds the tyrosine phosphatase SHP-2 through its intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) (1,2). PZR is phosphorylated by c-Src, c-Fyn, c-Lyn, Csk, and c-Abl (3). PP1, a Src family kinase inhibitor, inhibits PZR phosphorylation (4,5). There are three alternatively spliced isoforms, designated as PZR, PZRa, and PZRb; both PZRa and PZRb lack ITIMs (6,7). PZR is the main receptor of ConA and has an important role in cell signaling via c-Src (4). PZR is expressed in many cell types and is localized to cell contacts and intracellular granules in BAECs and mesothelioma (REN) cells. PZR has been implicated as a cell adhesion protein that may be involved in SHP-2-dependent signaling at interendothelial cell contacts (3). Hypertyrosine phosphorylation of PZR was observed during embryogenesis in a mouse model of Noonan syndrome (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The RalA binding protein 1 (RalBP1 or RLIP76) was originally identified as a GTP-RalA associated protein that acted as a downstream RalA effector in regulating Ral-Ras signaling (1). RalBP1 interacts with RalA and the endocytosis protein REPS2 (POB1) through its carboxy-terminal Ral binding domain. RalBP1 has an intrinsic GTPase activating function and interacts with Cdc42 through its centrally located Rho-GAP domain (1-3). A protein complex containing RalBP1/POB1/RalA regulates endocytosis of membrane receptors (4). RalBP1 also functions as a non-ABC transporter that catalyzes the ATP-dependent transport of numerous xenobiotics, including glutathione conjugates and some chemotherapeutic agents. RalBP1 transporter activity may play an important role in detoxification, drug resistance and the stress response (5-7). Increased expression of RalBP1 protein is associated with some forms of cancer and regression of cancer xenografts results from RalBP1 inhibition (8,9). Evidence to date suggests that RalBP1 may be a promising therapeutic target for cancer therapy.

$262
3 nmol
300 µl
SignalSilence® KEAP1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit KEAP1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The nuclear factor-like 2 (NRF2) transcriptional activator binds antioxidant response elements (ARE) of target gene promoter regions to regulate expression of oxidative stress response genes. Under basal conditions, the NRF2 inhibitor INrf2 (also called KEAP1) binds and retains NRF2 in the cytoplasm where it can be targeted for ubiquitin-mediated degradation (1). Small amounts of constitutive nuclear NRF2 maintain cellular homeostasis through regulation of basal expression of antioxidant response genes. Following oxidative or electrophilic stress, KEAP1 releases NRF2, thereby allowing the activator to translocate to the nucleus and bind to ARE-containing genes (2). The coordinated action of NRF2 and other transcription factors mediates the response to oxidative stress (3). Altered expression of NRF2 is associated with chronic obstructive pulmonary disease (COPD) (4). NRF2 activity in lung cancer cell lines directly correlates with cell proliferation rates, and inhibition of NRF2 expression by siRNA enhances anti-cancer drug-induced apoptosis (5).