Microsize antibodies for $99 | Learn More >>

Product listing: CYP17A1 Antibody, UniProt ID P05093 #17334 to RBAP46/RBAP48 Antibody, UniProt ID Q09028 #4633

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CYP17A1, also known as cytochrome P450C17, is a steroidogenic enzyme belonging to the P450 cytochrome superfamily of monooxygenases (1, 2). In humans, CYP17A1 expression is abundantly expressed in the adrenal cortex, where it plays a central role in the androgen synthesis pathway (2). CYP17A1 is the primary target of abiraterone, a synthetic steroid used in the treatment of castration-resistant prostate cancer (CRPC) (3, 4). Abiraterone is converted to the more active form D4A, which antagonizes androgen receptor signaling by inhibiting CYP17A1 and other steroidogenic enzymes (3, 4). This suppresses the synthesis of 5α-dihydrotestosterone (DHT), which is a driver of castration-resistant prostate cancer cell growth (3, 4).

$489
96 assays
1 Kit
CST's PathScan® Phospho-c-Kit (Tyr719) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of c-Kit protein when phosphorylated at Tyr719. A c-Kit Mouse mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-c-Kit proteins are captured by the coated antibody. Following extensive washing, Phospho-c-Kit (Tyr719) Rabbit Antibody is added to detect the captured phospho-c-Kit protein. Anti-rabbit IgG HRP-linked Antibody #7074 is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for this developed color is proportional to the quantity of c-Kit protein phosphorylated at Tyr719.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: c-Kit is a member of the subfamily of receptor tyrosine kinases that includes PDGF, CSF-1, and FLT3/flk-2 receptors (1,2). It plays a critical role in activation and growth in a number of cell types including hematopoietic stem cells, mast cells, melanocytes, and germ cells (3). Upon binding with its stem cell factor (SCF) ligand, c-Kit undergoes dimerization/oligomerization and autophosphorylation. Activation of c-Kit results in the recruitment and tyrosine phosphorylation of downstream SH2-containing signaling components including PLCγ, the p85 subunit of PI3 kinase, SHP2, and CrkL (4). Molecular lesions that impair the kinase activity of c-Kit are associated with a variety of developmental disorders (5), and mutations that constitutively activate c-Kit can lead to pathogenesis of mastocytosis and gastrointestinal stromal tumors (6). Tyr719 is located in the kinase insert region of the catalytic domain. c-Kit phosphorylated at Tyr719 binds to the p85 subunit of PI3 kinase in vitro and in vivo (7).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mouse, Rat, Zebrafish

Application Methods: Western Blotting

Background: The highly conserved receptor for activated C kinase 1 (RACK1), homologous to the β subunit of heterotrimeric G-proteins, was originally identified through its binding of active PKCβII and other classical PKC isoforms (1). RACK1 is a scaffold protein that recruits PKC and a wide range of other proteins to specific subcellular locations, promoting the formation of multiprotein complexes to induce and integrate various signaling pathways (reviewed in 2). One example of this is its enhancement of PKC-dependent JNK activation (3). RACK1 protein also resides in the eukaryotic ribosome, suggesting the possibility that RACK1 participates in the assembly of signaling complexes that regulate translation as well (reviewed in 4). RACK1 binds the SH2 domain of Src, and phosphorylation of RACK1 by Src occurs at Tyr228 after PKC activation (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD2 is a transmembrane glycoprotein expressed early in thymocyte development and present on most circulating T cells (1, 2). CD2 plays a role in T cell adhesion through binding to its ligand CD58 (LFA-3) (3). Stimulation of CD2 also leads to T cell activation and proliferation (2). T cells from mice deficient in both CD2 and CD28 have severe defects in T cell activation and function, while T cells deficient in either CD2 or CD28 are still capable of mounting a response, suggesting that CD2 and CD28 may have overlapping functions and may be able to compensate for each other (4). In addition, engagement of CD2 and CD58 was recently demonstrated to be the primary costimulatory signal in T cells that lack CD28 (5). CD2 expression also distinguishes a subset of plasmacytoid dendritic cells found in tumors and tonsils that express lysozyme, higher levels of IL-12 p40, and higher levels of CD80 (6).

Molecular Weight:853.92 g/mol

Background: Paclitaxel belongs to the taxane family of antitumor and antileukemic agents (3). By binding to β-tubulin and promoting the assembly of microtubules, paclitaxel prevents microtubual depolymerization and blocks normal cell division (1-3). The microtubule dysfunction induced by paclitaxel results in aberrant cell mitosis and sometimes apoptosis. The IC50 of paclitaxel-induced mitotic block is 4 nM (4).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Smad2 (Ser465/Ser467) (E8F3R) Rabbit mAb #18338.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is expressed in cells of the inner cell mass and the epiblast (1). Expression is down-regulated with development, although it is maintained in the embryonic germ cells and in the adult gonads (1). Reduced expression in embryonic stem cells (ESCs) is associated with failure to differentiate properly, although self-renewal is unaffected (2). UTF1 is tightly associated with chromatin in mouse and human ESCs and may be involved in maintaining an epigenetic environment necessary for the pluripotent state (2,3). Co-expression of UTF1 with reprogramming factors c-Myc, Oct-4, Sox2 and KLF4, along with siRNA knock-down of p53 increased efficiency of induced pluripotent stem cell generation by 100 fold (4).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Acetyl-Histone H4 (Lys16) (E2B8W) Rabbit mAb #13534.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). Histone acetylation occurs mainly on the amino-terminal tail domains of histones H2A (Lys5), H2B (Lys5, 12, 15, and 20), H3 (Lys9, 14, 18, 23, 27, 36 and 56), and H4 (Lys5, 8, 12, and 16) and is important for the regulation of histone deposition, transcriptional activation, DNA replication, recombination, and DNA repair (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the accessibility of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites for a protein module called the bromodomain, which binds to acetylated lysine residues (6). Many transcription and chromatin regulatory proteins contain bromodomains and may be recruited to gene promoters, in part, through binding of acetylated histone tails. Histone acetylation is mediated by histone acetyltransferases (HATs), such as CBP/p300, GCN5L2, PCAF, and Tip60, which are recruited to genes by DNA-bound protein factors to facilitate transcriptional activation (3). Deacetylation, which is mediated by histone deacetylases (HDAC and sirtuin proteins), reverses the effects of acetylation and generally facilitates transcriptional repression (7,8).

$109
200 ml
10X Wash Buffer, Phosphate Buffered Saline (PBS) is for use in immunfluorescence and flow cytometry assays. Cell Signaling Technology recommends using this wash buffer according to our protocols for IF and FLOW approved antibodies to ensure accurate and reproducible results.1X Wash Buffer contains 137 mM NaCl, 2.6 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, 0.005% sodium azide, pH 8.0. The product is free of calcium and magnesium salts.
APPLICATIONS

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

$135
1 ml
Affinity purified goat anti-biotin antibody is conjugated to calf intestinal alkaline phosphatase. This product has been optimized for the detection of biotinylated protein molecular weight standards in western blotting applications.
APPLICATIONS

Application Methods: Western Blotting

Background: The alkaline phosphatase (AP) conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent or other substrates for detection on western blots. One of the advantages of AP conjugation is that the reaction rate remains linear for a long period of time.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: RalA and RalB are members of the Ras family of small GTPases and are highly homologous in protein sequence. The functions of RalA and RalB are distinct yet overlapping. By binding to various effector proteins, RalA and RalB serve as important GTP sensors for exocytosis and membrane trafficking (1-3). RalA is required for Ras-related tumorigenesis (4) and RalB is important for tumor survival (5). In addition to tumor formation, Ral proteins also play a role in cancer cell migration and metastatic tumor invasion (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The transient receptor potential cation channel subfamily V member 3 (TRPV3 or VRL3) is a widely expressed ligand-gated ion channel protein that acts in temperature detection between 22º C and 40º C (1). Related transient receptor proteins (TRP) respond to different temperature ranges; TRPA1 responds to cold temperatures and TRPM1 to cool, while warmer temperatures elicit response from TRPV3 and TRPV4. Noxious heat or painful temperatures correlate with TRPM8 and TRPV1 activity (reviewed in 2). TRPV3 is found in association with TRPV1 (VR1) and is thought to modulate activity of this noxious heat-responsive protein (3). Increased TRPV1 and TRPV3 protein expression is correlated with nervous injury, while reduced expression of both may be see in cases of diabetic skin neuropathy (2). Recent evidence implicates TRPV3 in pruritic dermatitis, or itching associated with eczema and related skin disorders (4).

$303
100 µl
APPLICATIONS
REACTIVITY
Monkey, Mouse

Application Methods: Western Blotting

Background: Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor development (1). Mutations in either TSC2 or the related TSC1 (hamartin) gene cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by development of multiple, widespread non-malignant tumors (2). Tuberin is directly phosphorylated at Thr1462 by Akt/PKB (3). Phosphorylation at Thr1462 and Tyr1571 regulates tuberin-hamartin complexes and tuberin activity (3-5). In addition, tuberin inhibits the mammalian target of rapamycin (mTOR), which promotes inhibition of p70 S6 kinase, activation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translation initiation), and eventual inhibition of translation (3,6,7).

$262
3 nmol
300 µl
SignalSilence® FoxO1 siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit FoxO1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PEAK1 (Pseudopodium-enriched atypical kinase 1 or sgk269) is a member of nonreceptor atypical tyrosine kinase family identified by MS analysis of purified psedopodium (1). PEAK1 is a multi-domain protein with a N-terminal Erk binding site, followed by actin-targeting/Src substrate/Erk substrate region, Crk binding site, Shc binding site, and a C-terminal kinase domain (1, 2). By interacting with different adaptors like Shc, Grb2, Src, and others, PEAK1 functions as an important regulator in different signaling pathways, namely the Src/PEAK1/ErbB2 (3), EGFR Shc1/PEAK1/Grb2(4), TGFβ/PEAK1/Src/MAPK (5), and fibronectin/PEAK1/Src (6) pathways. PEAK1 plays an instrumental role in a wide variety of biological processes including epithelial-mesenchymal transition (EMT), dynamics of focal adhesion, cancer metastatic growth and invasion as well as cancer drug resistance (3, 5-8). Phosphorylation of PEAK1 at Tyr665 or Tyr635 by SFK (Src family Kinases) has been shown to be essential for cancer cell migration and invasion as well as the turnover of focal adhesions (7, 9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CUB domain containing protein 1 (CDCP1, SIMA135) is a putative stem cell marker shown in research studies to be highly expressed in some human cancer cells and in both typical and atypical (cancerous) colons (1). Expression of CDCP1 may be epigenetically regulated, as methylation of promoter CpG sequences results in decreased CDCP1 expression (2). The corresponding CDCP1 gene encodes a glycoprotein that acts as a complex, multidomain transmembrane antigen. CDCP1 has three extracellular CUB domains that may be involved in cell adhesion or extracellular matrix interactions (1,3). Src-family kinases may phosphorylate CDCP1 at five tyrosine residues within its cytoplasmic domain to provide a potential binding site for SH2 domain-containing proteins (3). CDCP1 is a putative hematopoietic stem cell marker (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Lysine-specific demethylase 1 (LSD1; also known as AOF2 and BHC110) is a nuclear amine oxidase homolog that acts as a histone demethylase and transcription cofactor (1). Gene activation and repression is specifically regulated by the methylation state of distinct histone protein lysine residues. For example, methylation of histone H3 at Lys4 facilitates transcriptional activation by coordinating the recruitment of BPTF, a component of the NURF chromatin remodeling complex, and WDR5, a component of multiple histone methyltransferase complexes (2,3). In contrast, methylation of histone H3 at Lys9 facilitates transcriptional repression by recruiting HP1 (4,5). LSD1 is a component of the CoREST transcriptional co-repressor complex that also contains CoREST, CtBP, HDAC1 and HDAC2. As part of this complex, LSD1 demethylates mono-methyl and di-methyl histone H3 at Lys4 through a FAD-dependent oxidation reaction to facilitate neuronal-specific gene repression in non-neuronal cells (1,6,7). In contrast, LSD1 associates with androgen receptor in human prostate cells to demethylate mono-methyl and di-methyl histone H3 at Lys9 and facilitate androgen receptor-dependent transcriptional activation (8). Therefore, depending on gene context LSD1 can function as either a transcriptional co-repressor or co-activator. LSD1 activity is inhibited by the amine oxidase inhibitors pargyline, deprenyl, clorgyline and tranylcypromine (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig

Application Methods: Immunoprecipitation, Western Blotting

Background: The protein kinase C-related kinases (PRKs) are a subfamily of Ser/Thr-specific kinases with a catalytic domain highly homologous to the PKC family (1-3). They are effectors of Rho family GTPases (4-6) and are activated by fatty acids and phospholipids in vitro (7,8). Activation in vitro and in vivo involves the activation loop phosphorylation of PRK1 (Thr774)/PRK2 (Thr816) by PDK1 (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: TBP binding protein associated factor 15 (TAF15) is a member of the multifunctional FET (FUS, EWS, and TAF15) family of proteins that bind both DNA and RNA and may be important for transcriptional regulation and RNA processing (1,2). Research studies show that FET family proteins, including TAF15, can be found as oncogenic fusion proteins with transcription factors in a variety of cancers. The fusion protein consists of the FET protein amino-terminal transcription activation domain and the transcription factor DNA binding domain, creating an aberrant transcription factor with potent transactivation potential (1-3). TAF15 can be part of a subset of the transcription factor IID (TFIID) complex, indicating that it may form a transcription pre-initiation complex at active genes, even if it is not considered a canonical TAF (4,5). Additional studies suggest roles for TAF15 in RNA splicing through its association with U1 small nuclear RNA and in regulation of cell cycle regulatory gene expression through a mechanism involving miRNA biosynthesis (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD109 is a glycosylphosphatidylinositol (GPI)-linked glycoprotein that belongs to the alpha2-macroglobulin family of thioester containing proteins (1). CD109 is associated with TGF-beta receptor I (TbRI) and inhibits TGF-beta signaling (2,3). Cleavage of CD109 at its Furin cleavage site results in the release of its large amino-terminal domain, which then binds to the TGF-beta receptor I to inhibit TGF-beta signaling (4-7). CD109 is expressed on a subset of CD34+ bone marrow cells and mesenchymal stem cells, activated platelets, activated T-cells, endothelial cells, and a wide variety of tumors (8-10). Elevated CD109 expression has been considered a diagnostic/prognostic marker for several types of cancers (11-14).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation, Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The human retinoid X receptors (RXRs) are encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. RXRs are type-II nuclear hormone receptors that are largely localized to the nuclear compartment independent of ligand binding. Nuclear RXRs form heterodimers with nuclear hormone receptor subfamily 1 proteins, including thyroid hormone receptor, retinoic acid receptors, vitamin D receptor, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor (1). Since RXRs heterodimerize with multiple nuclear hormone receptors, they play a central role in transcriptional control of numerous hormonal signaling pathways by binding to cis-acting response elements in the promoter/enhancer region of target genes (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The transcription factor proline, glutamic acid, and leucine rich protein 1 (PELP1, MNAR) mediates cell signaling through direct interaction with hormone nuclear receptors to regulate target gene transcription. This versatile protein also regulates gene expression by participating in chromatin remodeling, and acts as a cytoplasmic scaffold protein to mediate growth factor and hormone signaling (1). Following its original description as an estrogen receptor α (ERα) coactivator (2), additional research showed that PELP1 corepresses multiple nuclear hormone receptors and transcriptional regulators, including progesterone receptor, glucocorticoid receptor, AP1, and Stat3 (3). PELP1 also acts cooperatively with the secondary coactivator CARM1 at ERα target gene promoters to increase ERα-mediated transactivation (4). The PELP1 protein contains several leucine-rich repeats, important for interaction with nuclear receptors, and a carboxy-terminal glutamic acid-rich domain responsible for histone protein interaction (2). The glutamic acid-rich region of PELP1 binds to hypoacetylated histones H3 and H4 to block interaction between histone proteins and acetyltransferases. This interaction maintains histones in a hypoacetylated state and suppresses serum-response gene activation. Interaction between PELP1 and ERα relieves this repression and promotes acetylation of histone proteins (3).Research studies demonstrate altered regulation of PELP1 in several distinct hormone-dependent cancers, such as ovarian, breast, and prostate cancers (5-7). As a result, PELP1 may be a promising prognostic marker for hormone-dependent cancers, and inhibiting PELP1 expression or activity may prove beneficial in disrupting hormonal cancer initiation, progression, and metastasis (8).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Smad1 (D59D7) XP® Rabbit mAb #6944.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

Molecular Weight:354.46 g/mol

Background: Roscovitine is a cell permeable reversible selective inhibitor of cyclin-dependent kinases CDK1 (cdc2), CDK2 and CDK5 (1). A purine analog, this drug competes for the binding site of ATP in the catalytic cleft. Treatment of cultured cells with roscovitine can cause cell cycle arrest or apoptosis (1-4). The IC50 for cdc2 activity is 0.65 μM in vitro (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cas9 (S. pyogenes) (D8Y4K) Rabbit mAb #65832.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry

Background: The CRISPR associated protein 9 (Cas9) is an RNA-guided DNA nuclease and part of the Streptococcus pyogenes CRISPR antiviral immunity system that provides adaptive immunity against extra chromosomal genetic material (1). The CRISPR antiviral mechanism of action involves three steps: (i), acquisition of foreign DNA by host bacterium; (ii), synthesis and maturation of CRISPR RNA (crRNA) followed by the formation of RNA-Cas nuclease protein complexes; and (iii), target interference through recognition of foreign DNA by the complex and its cleavage by Cas nuclease activity (2). The type II CRISPR/Cas antiviral immunity system provides a powerful tool for precise genome editing and has potential for specific gene regulation and therapeutic applications (3). The Cas9 protein and a guide RNA consisting of a fusion between a crRNA and a trans-activating crRNA (tracrRNA) must be introduced or expressed in a cell. A 20-nucleotide sequence at the 5' end of the guide RNA directs Cas9 to a specific DNA target site. As a result, Cas9 can be "programmed" to cut various DNA sites both in vitro and in cells and organisms. CRISPR/Cas9 genome editing tools have been used in many organisms, including mouse and human cells (4,5). Research studies demonstrate that CRISPR can be used to generate mutant alleles or reporter genes in rodents and primate embryonic stem cells (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CENP-A is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin. The inherited localization of the centromere is specified by CENP-A (1). CENP-A deposition to the correct chromosomal location in early G1 phase is regulated by the Mis18 complex, which recruits the CENP-A assembly factor/chaperone protein HJURP (Holliday Junction Recognition Protein) (2-3).Dimerization of HJURP is required for its activity (4), and phosphorylation by cyclin dependent kinases is required for temporal regulation of HJURP recruitment (5).Overexpression of HJURP causes chromosome loss in yeast and mitotic defects in mammalian cells (6). Further, downregulation of HJURP expression has been associated with replicative senescence in human cells (7).Research studies indicate that HJURP may have prognostic value in human breast cancer and high grade gliomas (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Retinoblastoma-associated proteins 46 and 48 (RBAP46 and RBAP48; also known as RBBP7 and RBBP4) were first characterized in human cells as proteins that bind to the retinoblastoma (Rb) tumor suppressor protein (1). Since then, these proteins have been shown to be components of many protein complexes involved in chromatin regulation, including the chromatin assembly factor 1 (CAF-1) complex and type B histone acetyltransferase complex HAT1, both of which function in chromatin assembly during DNA replication (2,3). RBAP46 and RBAP48 are also found in the nucleosome remodeling factor complex NURF, the nucleosome remodeling and histone de-acetylation complex NuRD, and the Sin3/HDAC histone de-acetylation complex (4-7). More recently, RBAP46 and RBAP48 were identified as components of the polycomb repressor complex PRC2, which also contains EED and Ezh2 (8). RBAP46 and RBAP48 bind to the histone fold region of histone H4 and are believed to target these chromatin remodeling, histone acetylation, and histone de-acetylation complexes to their histone substrates (3).