Microsize antibodies for $99 | Learn More >>

Product listing: NME1/NDKA (D14H1) Rabbit mAb, UniProt ID P15531 #5353 to CDC37 (D28H7) Rabbit mAb, UniProt ID Q16543 #4222

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The NDK/NME/NM23 kinase family (encoded by the NME gene family) consists of at least eight distinct proteins that exhibit different cellular localization (1). Members of this group inhibit metastasis in a variety of tumor cell types (2). All NDK/NME/NM23 proteins possess nucleoside diphosphatase kinase (NDK) activity and catalyze the phosphorylation of nucleoside diphosphate to the corresponding nucleoside triphosphate to regulate a diverse array of cellular events (3). At least four classes of NDK biochemical activities have been described, including protein-protein interactions (4-6), regulation of GTP-binding protein function (7-9), DNA-associated activities (10,11), and histidine-dependent protein phosphotransferase activity (12). NDK/NME proteins participate in the regulation of a broad spectrum of cellular responses, including development, differentiation, proliferation, endocytosis, and apoptosis (13). Because of its role in metastasis suppression and oncogenesis, NDKA (NME1/NM23-H1) has been widely studied (14). NDKA (NM23-H1) and NDKB (NM23-H2) are encoded by adjacent NME1 and NME2 genes and share 90% sequence identity. Two serine residues (Ser122 and Ser144) on NDKA/NM23-H1 can be phosphorylated by AMPKα1, but only phosphorylation at Ser122 determines whether NDKA channels ATP to AMPKα1. This regulates AMPKα1 activity towards ACC1, an important regulator of fatty acid metabolism (15). Mutation of NDKB/NM23-H2 at Ser122 (S122P) in melanoma cells results in altered phosphoryl transfer activity (16).

$489
96 assays
1 Kit
PathScan® Total BACE Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous and transfected levels of BACE protein. A BACE Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, BACE protein is captured by the coated antibody. Following extensive washing, a BACE Mouse Detection mAb is added to detect the captured BACE protein. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for this developed color is proportional to the quantity of BACE protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Rat

Background: β-secretase (BACE) is an aspartic acid proteinase that catalyses the initial step in APP processing by cleaving and releasing a soluble, extracellular APP-β (sAPPβ) ectodomain and generating a membrane-bound, carboxy-terminal fragment consisting of 99 amino acids (CTF99). Additional processing of CTF99 by γ-secretase generates the amyloid β-peptide (Aβ) that forms aggregates in the brains of Alzheimer disease (AD) patients. BACE is an attractive target for inhibitors in AD therapy since it catalyses the first and rate limiting step in amyloidogenic APP processing (1). Pro-BACE-1 is synthesized in the ER before it is transported to the trans-Golgi network to undergo maturation (2). BACE-1 functions as a dimer and is phosphorylated at Ser498 by casein kinase 1, which is necessary for recycling back to the membrane from the early endosome (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CARD11/Carma1/Bimp3 belongs to the MAGUK (membrane-associated guanylate kinase) family that typically function as molecular scaffolds in the assembly of multiprotein complexes (1,2). MAGUK family members contain an SH3 domain, a PDZ domain and a GuK domain homologous to guanylate kinase. In addition, CARD11 contains an amino-terminal CARD domain (caspase recruitment domain). This domain plays an important role in forming interactions with a number of proteins containing CARD domains that are involved in regulating apoptosis and NF-κB activation. CARD11 is predominately expressed in lymphocytes (1,2) and associates with the CARD domain of Bcl10. When overexpressed, CARD11 leads to the phosphorylation of Bcl10 and activation of NF-κB (1,2). CARD11 is constitutively associated with lipid rafts and is thought to function by recruiting Bcl10 and MALT1 and triggering the phosphorylation of IKKs (3,4). Several studies using the genetic disruption of CARD11 or dominant-negative mutations have demonstrated that it plays a critical role in NF-κB activation and lymphocyte signaling (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: INCENP (inner centromere protein antigens 135 kDa, 155 kDa) is a chromosomal passenger protein crucial for multiple events that mediate chromosome separation during mitosis (1). At prophase INCENP is associated with chromatin whereas during prometaphase and metaphase it translocates to the inner centromere (1). Depletion of INCENP results in aberrant chromosome alignment at the metaphase plate, incomplete chromosome separation, and disruption of proper spindle formation and cytokinesis (2). INCENP is part of the chromosomal passenger complex that also contains Aurora B, borealin and survivin (2). Aurora B and INCENP are mutually dependent on each other for proper localization (3), and in Drosophila cells and C.elegans embryos that lack INCENP or survivin, Aurora B cannot organize the kinetochores and the midbody (4,5). Phosphorylation on INCENP by CDK1 on Thr59 and Thr388 leads to the association of INCENP with Plk1, another important regulator of mitotic entry and exit (6). Interaction of INCENP with Plk1 is necessary for recruitment of Plk1 to the kinetochores, and the metaphase to anaphase transition (6). Interactions have also been reported between INCENP and heterochromatin protein 1α (HP1) (7) and β-tubulin (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The NKX family of homeobox genes are known to act as intermediaries in the neural response to Sonic hedgehog signaling during central nervous system development (1). NKX2.2 is a member of this family of transcription factors and is necessary for neuroendocrine differentiation in the central nervous system and pancreas (2,3). NKX2.2 mutant mice die shortly after birth due to incomplete differentiation of insulin-producing pancreatic β cells and defects in ventral neural patterning (2,3). According to the research literature, expression of NKX2.2 has also been found in neuroendocrine tumors of the gut, making it a potential marker for the study of gastrointestinal neuroendocrine tumors (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: F-box only protein 7 (FBXO7) is the substrate recognition component of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex. This complex mediates ubiquitination and degradation of targeted proteins. Several “PARK” chromosomal loci have been associated with monogeneic forms of PD, including PARK15 (1). The associated allele for PARK15 is FBXO7, which encodes the FBXO7 protein. Mutations in FBXO7 cause early-onset autosomal recessive PD, and alterations in FBXO7 normal function, e.g. the protein degradation process, may contribute to PD etiology (2, 3). Additionally, expression of specific FBXO7 isoforms generated by alternative splicing is linked with PD (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Striatal enriched phosphatase (STEP, also known as PTPN5), is a protein tyrosine phosphatase expressed in dopaminoceptive neurons of the central nervous system (1). Alternative splicing produces the cytosolic STEP46 and the membrane-associated STEP61 isoforms of STEP. Dopamine activates D1 receptors and PKA, which in turn phosphorylate both isoforms of STEP. Phosphorylation of STEP61 occurs at Ser160 and Ser221, while STEP46 is phosphorylated at Ser49 (equivalent to Ser221 of STEP61) (2). NMDA-mediated activation of STEP is an important mechanism for regulation of Erk activity in neurons (3). Furthermore, STEP is involved in the regulation of both NMDAR and AMPAR trafficking (4,5). Due to its importance in cognitive function, STEP may play a role in Alzheimer's disease (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: The Na-K-2Cl cotransporter (NKCC2) is a sodium-potassium-chloride cotransporter. It is mainly expressed on the luminal membrane of renal epithelial cells of the thick ascending limb of Henle's loop (TALH) and mediates the majority of NaCl resorption and concentration of urine (1,2). NKCC2 is the target for several diuretic drugs, such as bumetanide, and is involved in the pathogenesis of hypertension (3,4). Mutations in the NKCC2-encoding gene, SLC12A1, causes Bartter’s syndrome, which is featured by impaired salt reabsorption in the TALH, hypokalemic metabolic alkalosis, and hypercalciuria (5,6). Recently, NKCC2 was reported to be expressed in the brain hypothalamo-neurohypophyseal system (HNS) and upregulated upon osmotic stress (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Presenilin Enhancer 2 (PEN2) is a small integral membrane glycoprotein that contains two recognized transmembrane domains. Both the N- and C-terminal domains are oriented into the lumen of the endoplasmic reticulum (1). PEN2, along with Presenilin 1, Presenilin 2, Nicastrin, and APH-1 form the protein complex γ-secretase (2). The proteinase BACE catalyses the initial step in APP processing by cleaving and releasing soluble APPβ (3). The remaining membrane bound APP is then cleaved by the γ-secretase complex, causing the release of amyloid β-peptide, the main constituent of amyloid plaques. These plaques are a hallmark of Alzheimer’s disease pathology (2). In addition to APP, the γ-secretase complex cleaves several other proteins and necessary presenilin-dependent signaling cascades, including the Notch pathway (4). It was found that PEN2 is an important part of the γ-secretase complex, and knocking it down results in reduced amounts of the complex, resulting in a loss of γ-secretase activity (5).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Jagged1 (D4Y1R) Rabbit mAb #70109.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Flow Cytometry

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated N-Cadherin (D4R1H) XP® Rabbit mAb #13116.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated RCAS1 (D2B6N) XP® Rabbit mAb #12290.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Receptor binding cancer antigen expressed on SiSo cells (RCAS1) is also known as estrogen receptor-binding fragment-associated gene 9 (EBAG9). Originally identified as an estrogen-inducible gene (1), RCAS1 was recently found to play a novel role in the adaptive immune response by negatively regulating the cytolytic activity of cytotoxic T lymphocytes (CTLs) (2). RCAS1 is conserved in phylogeny and is ubiquitously expressed in most human tissues and cells (3,4). There is evidence that tissue expression of RCAS1 is increased in a variety of malignancies, including cancers of the gastrointestinal tract, liver, lung, breast, ovary, endometrium, and cervix. Research studies have shown that levels of RCAS1 tissue expression are negatively correlated with the prognosis of patients harboring the aforementioned malignancies (4). It is also noteworthy that research studies have detected elevated levels of RCAS1 in the sera of cancer patients (4). Initial studies indicated that RCAS1 was secreted from cancer cells and functioned as a ligand for a putative receptor expressed on NK cells, as well as T and B lymphocytes, inducing their apoptosis, which enabled cancer cells to evade immune surveillance (5,6). Subsequent studies have identified RCAS1 as a type III transmembrane Golgi protein with the ability to regulate vesicle formation, secretion, and protein glycosylation (2,7-9). Indeed, it has been shown that RCAS1 overexpression negatively regulates the cytolytic function of CTLs by negatively regulating protein trafficking from the trans-Golgi to secretory lysosomes (2). Furthermore, RCAS1 overexpression delays vesicle transport from the ER to Golgi and causes components of the ER quality control and glycosylation machinery to mislocalize. As a consequence, RCAS1 induces the deposition of tumor-associated glycan antigens on the cell surface, which are thought to contribute to tumor pathogenesis through the mediation of adhesion, invasion, and metastasis (8,9).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated T7-Tag (D9E1X) XP® Rabbit mAb #13246.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$262
3 nmol
300 µl
SignalSilence® HER3/ErbB3 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit HER3/ErbB3 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: HER3/ErbB3 is a member of the ErbB receptor protein tyrosine kinase family, but it lacks tyrosine kinase activity. Tyrosine phosphorylation of ErbB3 depends on its association with other ErbB tyrosine kinases. Upon ligand binding, heterodimers form between ErbB3 and other ErbB proteins, and ErbB3 is phosphorylated on tyrosine residues by the activated ErbB kinase (1,2). There are at least 9 potential tyrosine phosphorylation sites in the carboxy-terminal tail of ErbB3. These sites serve as consensus binding sites for signal transducing proteins, including Src family members, Grb2, and the p85 subunit of PI3 kinase, which mediate ErbB downstream signaling (3). Both Tyr1222 and Tyr1289 of ErbB3 reside within a YXXM motif and participate in signaling to PI3K (4).Investigators have found that ErbB3 is highly expressed in many cancer cells (5) and activation of the ErbB3/PI3K pathway is correlated with malignant phenotypes of adenocarcinomas (6). Research studies have demonstrated that in tumor development, ErbB3 may function as an oncogenic unit together with other ErbB members (e.g. ErbB2 requires ErbB3 to drive breast tumor cell proliferation) (7). Thus, investigators view inhibiting interaction between ErbB3 and ErbB tyrosine kinases as a novel strategy for anti-tumor therapy.

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

$345
100 µg
Neutralizing antibodies can be used to inhibit normal biological function through their binding to biological molecules. These reagents can be used to determine the effects that a particular molecule has in biological systems. Human IL-17A Neutralizing (D13C2) Rabbit mAb has been shown to neutralize the production of IL-6 from human dermal fibroblast cells in vitro with an ND50 in the range of 8-50 ng/ml.
REACTIVITY
Human
$262
3 nmol
300 µl
SignalSilence® CK2α siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit CK2α expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: CK2 (formerly called Casein Kinase II) is a highly conserved protein kinase with more than 300 substrates regulating cell growth, cell death, and cell survival. CK2 has been implicated in the response to UV irradiation-induced DNA damage, targeting XRCC1 (1) and BRCA1 (2) as well as regulating p53 tumor suppressor protein functions (3). Furthermore, CK2 plays a key role in NF-κB activation (4). UV irradiation stimulates CK2-mediated phosphorylation of several carboxy-terminal residues within IκBα, resulting in IκBα proteasomal degradation and the release and nuclear translocation of active NF-κB. CK2 is also dysregulated in many cancers (5) and neurodegenerative diseases such as Alzheimer's and Parkinson's diseases (6). Structurally, CK2 is a multimeric protein complex consisting of two catalytic subunits (α or α') and two regulatory β subunits (7). CK2 is distributed ubiquitously and is apparently constitutively active (7). While cell cycle-dependent Ser-Pro phosphorylation sites have been identified on CK2α and CK2β, Tyr255 phosphorylation by the Src-related kinase c-Fgr seems to have the greatest effect on CK2α activity (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Orthodenticle homeobox 2 (OTX2) belongs to the bicoid subfamily of paired-box, homeodomain-containing transcription factors. OTX2 is a critically important neuronal transcription factor that functions to regulate the expression of cell cycle genes controlling proliferation and differentiation of neural progenitor cells (1-3). In addition to its neuronal development functions, it has been reported that OTX2 can function in a non-cell autonomous manner to promote survival of damaged retinal ganglion cells (4). OTX2 has also been shown to influence the susceptibility of post-mitotic neurons to toxic insult or physiological stress (3). Notably, aberrant expression of OTX2 has been strongly linked with neuronal tumor development. For example, research studies have found OTX2 is overexpressed in many medulloblastoma cell lines, and both overexpression and gene amplification were reported in a subset of primary medulloblastomas (5). In vitro studies support these observations, as targeted alterations in OTX2 expression directly affected both proliferation and senescence of medulloblastoma cell lines (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The p75 neurotrophin receptor (p75NTR), a member of the TNF receptor superfamily, is distinguished by multiple cysteine-rich ligand-binding domains, a single transmembrane sequence and a noncatalytic cytoplasmic domain (1). p75NTR displays paradoxical functions when acting alone or with other receptor proteins. Working in concert with Trk receptors, p75NTR recognizes neurotrophins and transmits trophic signals into the cell. Both p75NTR and TrkA are required to activate PI3K-Akt signaling, while TrkA can individually activate the MAP kinase pathway. In contrast, p75NTR, possibly through JNK, ensures appropriate apoptosis of injured neurons and improperly targeted neonatal neurons (2).The p75NTR protein undergoes sequential cleavage similar to APP and Notch. First, α-secretase removes the p75NTR ectodomain, eliminating ligand-mediated signaling. At this point, the membrane-tethered cleavage product can still fine-tune Trk-mediated trophic actions. γ-secretase cleaves within the transmembrane domain to liberate the cytoplasmic tail from its membrane anchor and allow the p75NTR intracellular domain to translocate to the nucleus (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Choline kinase (ChoK) catalyzes the phosphorylation of choline, a key step in the biosynthesis of the membrane phospholipid phosphatidylcholine. At least three ChoK isoforms exist in mammalian cells, α-1, α-2, and β. The two α isoforms are transcribed from the same CHKA gene as splice variants, while the β isoform resides on a separate CHKB gene (reviewed in 1).Research studies indicate that ChoKα levels affect signaling through MAPK and Akt pathways (2,3). Investigators have shown that ChoKα plays a role in proliferation and carcinogenesis and is highly expressed/activated in human cancers (4-7). Additional research studies suggest ChoKα may be a potential target for cancer therapy (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Presenilin Enhancer 2 (PEN2) is a small integral membrane glycoprotein that contains two recognized transmembrane domains. Both the N- and C-terminal domains are oriented into the lumen of the endoplasmic reticulum (1). PEN2, along with Presenilin 1, Presenilin 2, Nicastrin, and APH-1 form the protein complex γ-secretase (2). The proteinase BACE catalyses the initial step in APP processing by cleaving and releasing soluble APPβ (3). The remaining membrane bound APP is then cleaved by the γ-secretase complex, causing the release of amyloid β-peptide, the main constituent of amyloid plaques. These plaques are a hallmark of Alzheimer’s disease pathology (2). In addition to APP, the γ-secretase complex cleaves several other proteins and necessary presenilin-dependent signaling cascades, including the Notch pathway (4). It was found that PEN2 is an important part of the γ-secretase complex, and knocking it down results in reduced amounts of the complex, resulting in a loss of γ-secretase activity (5).

$305
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: When T cells encounter antigens via the T cell receptor (TCR), information about the quantity and quality of antigens is relayed to the intracellular signal transduction machinery (1). This activation process depends mainly on CD3 (Cluster of Differentiation 3), a multiunit protein complex that directly associates with the TCR. CD3 is composed of four polypeptides: ζ, γ, ε and δ. Each of these polypeptides contains at least one immunoreceptor tyrosine-based activation motif (ITAM) (2). Engagement of TCR complex with foreign antigens induces tyrosine phosphorylation in the ITAM motifs and phosphorylated ITAMs function as docking sites for signaling molecules such as ZAP-70 and p85 subunit of PI-3 kinase (3,4). TCR ligation also induces a conformational change in CD3ε, such that a proline region is exposed and then associates with the adaptor protein Nck (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Na+/H+ exchanger regulatory factor 2 (NHERF2) is one of four proteins in the NHERF protein family. It is closely related to NHERF1 and, like NHERF1, contains two PDZ domains and a C-terminal ezrin/radixin/moesin (ERM) binding domain (EBD). Along with the other members of this protein family, NHERF2 is abundantly present in the mammalian small intestine and colon where it plays a central role in trafficking, membrane retention, dimerization, and regulation of ion channels and membrane proteins (1). NHERF2 is a scaffolding protein that recruits membrane proteins to the apical membrane by tethering them to the apical cytoskeleton via its ERM domain (2). It has been shown that the NHERF proteins bind to the Na+/H+ exchanger 3 (NHE3) in the brush border of intestinal epithelial cells. NHE3 accounts for the majority of neutral NaCl absorbtion and NHERF proteins play an essential role in NHE3 regulation (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Small non-coding RNAs are important regulators of gene expression in higher eukaryotes (1,2). Several classes of small RNAs, including short interfering RNAs (siRNAs) (3), microRNAs (miRNAs) (4), and Piwi-interacting RNAs (piRNAs) (5), have been identified. MicroRNAs are about 21 nucleotides in length and have been implicated in many cellular processes such as development, differentiation, and stress response (1,2). MicroRNAs regulate gene expression by modulating mRNA translation or stability (2). MicroRNAs function together with the protein components in the complexes called micro-ribonucleoproteins (miRNPs) (2). Among the most important components in these complexes are Argonaute proteins (1,2). There are four members in the mammalian Argonaute family and only Argonaute 2 (Ago2) possesses the Slicer endonuclease activity (1,2). Argonaute proteins participate in the various steps of microRNA-mediated gene silencing, such as repression of translation and mRNA turnover (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: mTORC1 kinase complex is a critical component to regulate cell growth in response to energy levels, growth factors, and amino acids (1-4). The GTPases RagA, RagB, RagC and RagD have been shown to interact with raptor in mTORC1 (3,4). A Ragulator complex, consisting of LAMTOR1/C11orf59, LAMTOR2/ROBLD3, LAMTOR3/MAPKSP1, LAMTOR4/C7orf59 and LAMTOR5/HBXIP, associates with the Rag GTPases and recruit them to the surface of lysosomes (5, 6). These interactions lead to mTORC1 activation in response to amino acid signals (3-6). In addition, C17orf59 was shown to interact with Ragulator and disrupt the interaction between Ragulator and Rag GTPases (7). This disruption prevents mTOR from localizing to the lysosomal membrane and therefore inhibits mTORC1 activation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Nicastrin is a transmembrane glycoprotein serving as an essential component of the γ-secretase complex (1,2). Nicastrin is physically associated with presenilin and plays an important role in the stabilization and correct localization of presenilin to the membrane-bound γ-secretase complex (3). Nicastrin also serves as a docking site for γ-secretase substrates such as APP and Notch, directly binding to them and properly presenting them to γ-secretase to ensure the correct cleavage process (2,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: DNA repair systems operate in all living cells to manage a variety of DNA lesions. Nucleotide excision repair (NER) is implemented in cases where bulky helix-distorting lesions occur, such as those brought about by UV and certain chemicals (1). Excision Repair Cross Complementing 1 (ERCC1) forms a complex with ERCC4/XPF, which acts as the 5’ endonuclease required to excise the lesion (2). ERCC1-XPF is also required for repair of DNA interstrand crosslinks (ICLs) (3) and involved in repair of double strand breaks (4). Research studies have shown that expression of ERCC1 is related to survival rate and response to chemotherapeutic drugs in several human cancers including non-small cell lung cancer (NSCLC) (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CDC37 is an important component of the HSP90 chaperone complex (1,2). It was initially identified for its involvement in cell-cycle progression and was later found to have a much broader role as a chaperone for a wide variety of kinases and other proteins (1-3). CDC37 protein has an amino-terminal kinase binding domain followed by a central HSP90 binding domain. It recruits and stabilizes kinases in the HSP90 complex by protecting the newly synthesized kinase peptide chain from degradation and promoting the next step of protein maturation (4,5). CDC37 also suppresses the ATPase activity of HSP90, thereby leading to conformational changes in the complex that preclude target kinase loading (6). CDC37 has been proposed as a therapeutic target because of its important role in multiple kinase pathways involved in proliferation and cancer cell survival, including Raf, Akt, Src, and ErbB2 pathways (7,8).