Microsize antibodies for $99 | Learn More >>

Product listing: SignalSilence® SirT6 siRNA I, UniProt ID Q8N6T7 #9390 to FAIM Antibody, UniProt ID Q9NVQ4 #6907

$262
3 nmol
300 µl
SignalSilence® SirT6 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit SirT6 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The Silent Information Regulator (Sir2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of this family is Saccharomyces cerevisiae Sir2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT6, a mammalian homolog of Sir2, is a nuclear, chromatin-associated protein that promotes the normal maintenance of genome integrity mediated by the base excision repair (BER) pathway (2-4). The BER pathway repairs single-stranded DNA lesions that arise spontaneously from endogenous alkylation, oxidation, and deamination events. SirT6 deficient mice show increased sensitivity to DNA-damaging agents, including the alkylating agents MMS and H2O2 (2). In addition, these mice show genome instability with increased frequency of fragmented chromosomes, detached centromeres, and gaps (2). SirT6 may regulate the BER pathway by deacetylating DNA Polβ or other core components of the pathway (2).

$262
3 nmol
300 µl
SignalSilence® USP14 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit USP14 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Ubiquitinating enzymes (UBEs) catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action (1,2). Five DUB subfamilies are recognized, including the USP, UCH, OTU, MJD, and JAMM enzymes. In humans, there are three proteasomal DUBs: PSMD14 (POH1/RPN11), UCH37 (UCH-L5), and Ubiquitin-Specific Protease 14, which is also known as the 60 kDa subunit of tRNA-guanine transglycosylase (USP14/TGT60 kDa). USP14 is recruited to the proteasome through its reversible association with the PSMD2 (S2/hRPN1) subunit of the 19S regulatory particle. Whereas PSMD14 appears to promote substrate degradation (3,4), USP14 is thought to antagonize substrate degradation (5-8). While the underlying mechanism for the opposing roles of these two proteasomal DUBs is still uncertain, it is thought that USP14 removes ubiquitin from substrate upon docking of the substrate with the 26S proteasome. Furthermore, USP14 trims ubiquitin residues from the distal end of the polyubiquitin chain, thus decreasing the affinity of the chain for the ubiquitin receptors of the proteasome, and allowing for enhanced substrate stability (6,9,10). Studies have elucidated a physiologic role for USP14 in regulating synaptic activity in mammals (11). Research studies have shown that targeting this activity with small molecule inhibitors has potential benefits for the treatment of neurodegenerative diseases and cancer (5,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Contactin-associated protein 2 (Caspr2) is a type I transmembrane protein and member of the neurexin superfamily that mediates nervous system cell-cell interactions through the Neurexin IV-Caspr-Paranodin (NCP) complex (1). A multiprotein complex consisting of TAG-1, Caspr2, K+ channel, PSD95 and protein 4.1B mediates the molecular interactions at the juxtaparanodal region of myelinated axons, with homophilic TAG-1 interactions mediating the binding of this complex to glia (2,3).Caspr2 protein localizes to juxtaparanodal regions of myelinated axons where it forms a cis-complex with the immunoglobulin-like cell adhesion molecule TAG-1. Caspr2 also binds to Shaker K+ channels Kv1.1, Kv1.2, and their Kvβ2 subunit. A PDZ domain at the Caspr2 carboxy terminus mediates the Caspr2-K+ channel association. Caspr2 is required for proper K+ channel localization, as Caspr2 deletion causes the redistribution of channels along the internodes (1-3). Furthermore, Caspr2 binds to protein 4.1B and connects the protein complex to the axonal cytoskeleton (4). Mutations in the Caspr2 gene have been linked to focal epilepsy, cortical dysplasia and Gilles de la Tourette syndrome (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: DDX4 is an ATP-dependent DEAD-box RNA helicase found in the chromatoid body of the germ cells (1). This enzyme is specific to germ cells and is necessary for germ cell development (2). Mouse DDX4 was shown to interact with Dicer, suggesting a role in microRNA-mediated RNA silencing (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The super elongation complex (SEC) plays a critical role in regulating RNA polymerase II (RNAPII) transcription elongation (1). The SEC is composed of AFF4, AFF1/AF4, MLLT3/AF9, and MLLT1/ENL proteins. The pathogenesis of mixed lineage leukemia is often associated with translocations of the SEC subunits joined to the histone H3 Lys4 methyltransferase mixed lineage leukemia (MLL) gene (1-4). The SEC has been found to contain RNAPII elongation factors eleven-nineteen lysine-rich leukemia (ELL), ELL2, and ELL3, along with the associated factors EAF1 and EAF2, which can increase the catalytic rate of RNAPII transcription in vitro, (1,2,5-7). The SEC positive transcription elongation factor b (P-TEFb) phosphorylates the carboxy-terminal domain within the largest subunit of RNAP II at Ser2 of the heptapeptide repeat. The SEC negative transcription elongation factors, DRB-induced stimulating factor (DSIF) and negative elongation factor (NELF), signal the transition from transcription initiation and pausing to productive transcription elongation (2,8-10). The chromosomal translocation of MLL with the members of the SEC leads to SEC recruitment to MLL regulated genes, such as the highly developmentally regulated Hox genes, implicating the misregulation and overexpression of these genes as underlying contributors to leukemogenesis (1,2,9,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Macrophage inhibitory cytokine-1 (Mic-1), also termed GDF15 (1), PTGF-β (2), PLAB (3), PDF (4), and NAG-1 (5), is a divergent member of the transforming growth factor-β (TGF-β) superfamily (6). Like other family members, Mic-1 is synthesized as an inactive precursor that undergoes proteolytic processing involving removal of an N-terminal hydrophobic signal sequence followed by cleavage at a conserved RXXR site generating an active C-terminal domain that is secreted as a dimeric protein. Mic-1 is highly expressed in the placenta and is also dramatically increased by cellular stress, acute injury, inflammation, and cancer. In the brain, Mic-1 is found in the choroid plexus and is secreted into the cerebrospinal fluid (7). It is also a transcriptional target of the p53 tumor suppressor protein and may serve as a biomarker for p53 activity (8,9). During tumor progression, Mic-1 has various effects on apoptosis, differentiation, angiogenisis, and metastasis, and may also contribute to weight loss during cancer (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Non-T cell activation linker (NTAL)/linker for activation of B cells (LAB) is a small transmembrane adaptor protein associated with glycolipid-enriched membrane fractions (1,2). NTAL/LAB is also known as LAT2 (linker for activation of T cells 2), WBSCR5, WBS15, and WBSCR15 (Williams-Beuren syndrome chromosome region 15 protein). It is expressed in B cells, monocytes, mast cells, and natural killer cells, but not in resting T cells (3). Upon activation of several receptors, NTAL/LAB becomes tyrosine-phosphorylated and recruits signaling molecules such as GRB2 and c-Cbl into receptor signaling complexes (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Semaphorin-4D/CD100 (Sema4D) is a disulfide-linked homodimeric type 1 transmembrane glycoprotein belonging to the class IV family of membrane bound semaphorins. The extracellular domain of Sema4D contains a cysteine-rich semaphorin-like domain, an Ig-like domain, and a PSI domain (1). Research studies have suggested that the cytoplasmic domain has a signaling function as it is phosphorylated on serine residues (2). Initial studies involving Sema4D revealed that it was implicated in axon guidance within the central nervous system through binding its high affinity receptor, plexin-B1 (3). Sema4D function has also been extensively characterized in the immune system and is the first semaphorin found to be expressed on the surface of many types of immune cells (4-6). In the immune system, CD72 serves as a low-affinity receptor for Sema4D (7) and research studies have shown that Sema4D not only regulates T-cell activation (8,9) but is also involved in the regulation of B-cell survival and differentiation (10). Many of the physiologic effects of Sema4D in the immune system are regulated by a soluble extracellular domain-containing fragment generated through proteolytic cleavage (11).Sema4D has also been implicated in oncogenesis as research studies have demonstrated overexpression in multiple types of solid tumors (12,13). The role of Sema4D in oncogenesis, in part, has been linked to its ability to promote tumor angiogenesis (14), cell invasion (15), and immunosuppression through enhancement of myeloid derived suppressor cell function (16).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Stargazin is a four-pass transmembrane protein related to VDCC (voltage dependent calcium channel) γ subunits and part of the TARP (transmembrane AMPA receptor regulatory protein) family of proteins. TARP proteins can form a complex with AMPA receptors (GluR1-4) and serve as integral auxiliary subunits (1-6).Interactions between stargazin and AMPA receptors are implicated in regulation of receptor surface expression, synaptic clustering and recycling, as well as increased receptor responsiveness to glutamate (1,2,5,6). Stargazin may play a role in the molecular mechanism of AMPAR-mediated inflammatory pain by taking part in signaling pathways that relay pain in the spinal cord (5). Because the protein also modulates the pharmacology of AMPA receptors, it enhances the effects of AMPAR potentiators that have therapeutic potential for a number of mental and neurodegenerative diseases (6).The carboxy terminus of the stargazin protein interacts with the PDZ domains of PSD95 and other membrane-associated guanylate kinase (MAGUK) family members, and together traffic AMPA receptors to the cell surface membrane, anchoring them to the postsynaptic site (1,7). Phosphorylation of stargazin by PKA on Thr321 inhibits this binding (3).

$262
3 nmol
300 µl
SignalSilence® GRB2 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit GRB2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Growth factor receptor-binding protein 2 (GRB2) is an adaptor protein that is involved in RTK signal transduction. The SH2 domain of GRB2 binds to tyrosine phosphorylated proteins such as EGFR, IRS-1, Shc and Gab1 (1). The SH3 domain of GRB2 associates with Sos, which stimulates the GTP binding activity of Ras, leading to the activation of the MAP kinase and other signaling pathways. Phosphorylation of Tyr209 of GRB2 by Bcr-Abl and EGFR abolishes its association with Sos and negatively regulates downstream signaling (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Regulation of the E2F family of transcription factors, primarily through the retinoblastoma protein (pRb), is vital for control of cell proliferation and cell death (reviewed in 1). E2F-associated phosphoprotein (EAPP) was identified as an E2F-family binding protein that modulates E2F-regulated transcription and may be required for S phase entry. EAPP is expressed at varied levels in all tissues and cell types examined and its expression is reduced in nocodazole-arrested cells (2). Mass spectrometry studies have identified multiple EAPP phosphorylation sites including Ser109 and Ser111, but biological consequences of EAPP phosphorylation have yet to be elucidated (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Elongator is a highly conserved transcription elongation factor complex that was first identified in yeast as part of the hyperphosphorylated RNA polymerase II (RNAPII) holoenzyme (1). The Elongator complex consists of 6 subunits, ELP1-6, and has been shown to have acetyltransferase activity (2). The acetylation targets of Elongator include histone H3, which is linked to the transcription elongation function of the complex, and α-tubulin, which is associated with regulation of migration and maturation of projection neurons (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: LIN28A and LIN28B are conserved, developmentally regulated RNA binding proteins that inhibit the processing and maturation of the let-7 family of miRNAs (1,2). The let-7 miRNAs have been implicated in repression of oncogenes such as Ras, Myc, and HMGA2 (3). It has recently been shown that upregulation of LIN28A and LIN28B in primary human tumors and human cancer cell lines is correlated with downregulation of let-7 miRNAs (4). LIN28 genes are reported to be involved in primordial germ cell development and germ cell malignancy (5). In addition, allelic variation in LIN28B is associated with regulating the timing of puberty in humans (6). Overexpression of LIN28A, in conjunction with Oct-4, Sox2, and Nanog, can reprogram human fibroblasts to pluripotent, ES-like cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). Polycomb group proteins regulate cell proliferation and senescence through repression of the p16Ink4a and p19Arf genes, and are essential in maintaining adult hematopoietic, neural stem cells, and embryonic stem cells (3-5). PcG proteins are found in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. DNA-binding transcription factors recruit the EED-EZH2 complex to genes, which methylates histone H3 on Lys27 (6). Methylation of Lys27 facilitates the recruitment of the PRC1 complex, which ubiquitinylates histone H2A on Lys119 (7). PRC1 is composed of BMI1 and RING1A, which enhance the E3 ubiquitin ligase activity of the RING1B catalytic subunit (8). Polyhomeotic-like 1 (PHC1) is one of several additional PRC1 complex proteins that are required to maintain the silenced state of PRC1 target genes and mediate proper anterior-posterior specification during development (9). Mutations in the corresponding PHC1 gene correlate with an autosomal recessive form of primary microcephaly characterized by low-to-normal cognitive function and impaired DNA repair (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Ring1 and YY1-binding protein (RYBP) is a widely expressed nuclear protein that functions as a modulator of Ring1A/Ring1B-dependent histone H2A monoubiquitylation (1-3). Ring1A and Ring1B proteins function as the catalytic core subunits of polyclomb repressor complex 1 (PRC1), which acts to repress gene expression in part through monoubiquitination of histone H2A on Lys119 (4). By binding to both the YY1 DNA-binding transcription factor and Ring1A/Ring1B, RYPB is able to recruit the PRC1 complex to target loci independent of prior tri-methylation of histone H3 Lys27 by the EZH2-dependent PRC2 complex (2,3). RYBP also binds monoubiquitinated H2A Lys119 and may act to stabilize or spread binding of PRC1 across large domains of repressed chromatin (5). In addition, RYBP directly stimulates the ubiquitination activity of Ring1A/Ring1B and is required for proper differentiation of stem cells along multiple cell lineages (2,3,6,7). RYBP has also been shown to bind MDM2 and block ubiquitination and degradation of p53, leading to cell cycle arrest and apoptosis in response to DNA damage (8). Many studies demonstrate that RYBP functions as a tumor suppressor protein. RYBP expression is decreased in multiple cancers, including non-small cell lung cancer, hepatocellular carcinoma, and glioblastoma with decreased expression correlating with metastasis and poor prognosis (8-11).

$262
3 nmol
300 µl
SignalSilence® CDK8 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit CDK8 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The mammalian Mediator Complex is a multi-subunit protein complex that couples specific transcriptional regulators to RNA polymerase II (Pol II) and the basal transcription machinery. Interactions between distinct Mediator subunits and transcription factors allow for specific gene regulation (reviewed in 1).Mediator complex interactions control various biological processes, including insulin signaling (2), NF-κB-dependent signaling (3), stem cell pluripotency and self renewal (4,5), and proliferation of colon cancer cells (6,7).CDK8/Cyclin C, along with Med12 and Med13, constitute a subcomplex within the Mediator Complex thought to act as a molecular switch, inhibiting Pol II recruitment and transcription initiation (8,9). Expression of CDK8 abrogates E2F-1-dependent inhibition of β-catenin activity in colon cancer cells (9). High levels of CDK8 coincide with high β-catenin-dependent transcription in colon cancer cells, and their proliferation can be inhibited by suppressing CDK8 expression (8).CDK8 can phosphorylate Ser727 on STAT1, which reduces natural killer (NK) cell toxicity (10,11). As such, inhibitors are being pursued as potential therapeutics to enhance NK cell activity and combat a variety of cancer types (12,13).

$262
3 nmol
300 µl
SignalSilence® CTCF siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit CTCF expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: CCCTC-binding factor (CTCF) and its paralog, the Brother of the Regulator of Imprinted Sites (BORIS), are highly conserved transcription factors that regulate transcriptional activation and repression, insulator function, and imprinting control regions (ICRs) (1-4). Although they have divergent amino and carboxy termini, both proteins contain 11 conserved zinc finger domains that work in combination to bind the same DNA elements (1). CTCF is ubiquitously expressed and contributes to transcriptional regulation of cell-growth regulated genes, including c-myc, p19/ARF, p16/INK4A, BRCA1, p53, p27, E2F1, and TERT (1). CTCF also binds to and is required for the enhancer-blocking activity of all known insulator elements and ICRs, including the H19/IgF2, Prader-Willi/Angelman syndrome, and Inactive X-Specific Transcript (XIST) anti-sense loci (5-7). CTCF DNA-binding is sensitive to DNA methylation, a mark that determines selection of the imprinted allele (maternal vs. paternal) (1). The various functions of CTCF are regulated by at least two different post-translational modifications. Poly(ADP-ribosyl)ation of CTCF is required for insulator function (8). Phosphorylation of Ser612 by protein kinase CK2 facilitates a switch of CTCF from a transcriptional repressor to an activator at the c-myc promoter (9). CTCF mutations or deletions have been found in many breast, prostate, and Wilms tumors (10,11). Expression of BORIS is restricted to spermatocytes and is mutually exclusive of CTCF (3). In cells expressing BORIS, promoters of X-linked cancer-testis antigens like MAGE-1A are demethylated and activated, but methylated and inactive in CTCF-expressing somatic cells (12). Like other testis specific proteins, BORIS is abnormally expressed in different cancers, such as breast cancer, and has a greater affinity than CTCF for DNA binding sites, detracting from CTCF’s potential tumor suppressing activity (1,3,13,14).

$262
3 nmol
300 µl
SignalSilence® eIF4E siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit eIF4E expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: Eukaryotic initiation factor 4E (eIF4E) binds to the mRNA cap structure to mediate the initiation of translation (1,2). eIF4E interacts with eIF4G, a scaffold protein that promotes assembly of eIF4E and eIF4A into the eIF4F complex (2). eIF4B is thought to assist the eIF4F complex in translation initiation. Upon activation by mitogenic and/or stress stimuli mediated by Erk and p38 MAPK, Mnk1 phosphorylates eIF4E at Ser209 in vivo (3,4). Two Erk and p38 MAPK phosphorylation sites in mouse Mnk1 (Thr197 and Thr202) are essential for Mnk1 kinase activity (3). The carboxy-terminal region of eIF4G also contains serum-stimulated phosphorylation sites, including Ser1108, Ser1148, and Ser1192 (5). Phosphorylation at these sites is blocked by the PI3 kinase inhibitor LY294002 and by the FRAP/mTOR inhibitor rapamycin.

$262
3 nmol
300 µl
SignalSilence® UCHL1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit UCHL1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). DUBs are categorized into 5 subfamilies: USP, UCH, OTU, MJD, and JAMM. UCHL1, UCHL3, UCHL5/UCH37, and BRCA-1-associated protein-1 (BAP1) belong to the ubiquitin carboxy-terminal hydrolase (UCH) family of DUBs, which all possess a conserved catalytic UCH domain of about 230 amino acids. UCHL5 and BAP1 have unique, extended carboxy-terminal tails. UCHL1 is abundantly expressed in neuronal tissues and testes, while UCHL3 expression is more widely distributed (3,4). Although UCHL1 and UCHL3 are the most closely related UCH family members with about 53% identity, their biochemical properties differ in that UCHL1 binds monoubiquitin and UCHL3 shows dual specificity toward both ubiquitin (Ub) and NEDD8, a Ub-like molecule.UCHL1 (PGP 9.5/PARK5) functions as a deubiquitinating enzyme and monoubiquitin stabilizer. In vitro studies have demonstrated that UCHL1 can hydrolyze isopeptide bonds between the carboxy-terminal glycine of Ub and the ε-amino group of lysine on target proteins. UCHL1 is also involved in the cotranslational processing of pro-ubiquitin and ribosomal proteins translated as ubiquitin fusions (5-7). Mice deficient in UCHL1 experience spasticity, suggesting that UCHL1 activity is required for the normal neuromuscular junction structure and function (5-7). Research studies have described loss of UCHL1 expression in numerous human malignancies, such as prostate, colorectal, renal, and breast carcinomas. Investigators have shown that loss of UCHL1 expression in breast carcinomas can be attributed to hyper-methylation of the UCHL1 gene promoter (8). While loss of UCHL1 expression is implicated in human carcinogenesis, mutation of UCHL1 has been implicated in neurodegenerative diseases such as Parkinson's and Alzheimer's (6,7).

$262
3 nmol
300 µl
SignalSilence® USP1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit USP1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Ubiquitinating enzymes (UBEs) catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzymes (DUB) action (1,2). There are five DUB subfamilies including the USP, UCH, OTU, MJD, and JAMM enzymes. USP1 belongs to the USP subfamily and is regulated in a cell cycle dependent manner by both transcriptional and ubiquitin-proteosomal mechanisms (3). USP1 is a nuclear protein and localizes to chromatin where it is specifically associated with FANCD2. USP1 deubiquitinates monoubiquitinated FANCD2, which plays an important role in DNA damage repair and Chk1 protein stability (3,4). Another important target of USP1 is PCNA. USP1 deubiquitinates monoubiquitinated PCNA, thereby negatively regulating PCNA-mediated translesion synthesis (TLS) during DNA repair (5). USP1 interaction with UAF1, a WD40 repeat-containing protein, leads to formation of an activated USP1/UAF1 complex, which is required for the deubiquitinase activity of USP1 (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Suppressor of Ty-16 (SPT16) and structure-specific recognition protein-1 (SSRP1) are subunits of the facilitates chromatin transcription (FACT) complex that is essential for transcription elongation (1,2). FACT facilitates RNA polymerase-dependent transcription of chromatin templates by destabilizing the nucleosomes within the open reading frames of active genes (3-5). FACT destabilizes the nucleosomes, which would otherwise act as barriers to RNA polymerase transcription activity, by disrupting histone-histone and histone-DNA contacts that lead to the eviction of the histone H2A-H2B dimer (2,3,6). FACT may also function as a histone chaperone to reassemble nucleosomes after RNA polymerase passage (7). In addition to transcription, FACT activity has been shown to have a role in DNA replication in yeast and in DNA repair by contributing to the activation of p53 by CK2 and by facilitating histone H2AX-H2B exchange upon DNA damage (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SynGAP is a synaptic GTPase-activating protein selectively expressed in the brain and found at higher concentrations specifically at excitatory synapses in the mammalian forebrain. SynGAP has a PH domain, a C2 domain, and a highly conserved RasGAP domain, which negatively regulates both Ras activity and its downstream signaling pathways. SynGAP interacts with the PDZ domains of SAP102, as well as PSD95, a postsynaptic scaffolding protein that couples SynGAP to NMDA receptors (1). SynGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Ser765 and Ser1123, among other sites (2,3). Phosphorylation of SynGAP results in stimulation of the GTPase activity of Ras, and PSD95 dependent CaMKII phosphorylation of SynGAP increases after transient brain ischemia (1,4). SynGAP is implicated in NMDAR- and CaMKII-dependent regulation of AMPAR trafficking and plays an important role in synaptic plasticity (3,5). SynGAP is critical during neuronal development as mice lacking SynGAP protein die postnatally. Furthermore, SynGAP mutant mice have reduced long-term potentiation (LTP) and perform poorly in spatial memory tasks (6).

$262
3 nmol
300 µl
SignalSilence® Bak siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Bak expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Bak is a proapoptotic member of the Bcl-2 family (1). This protein is located on the outer membrane of mitochondria and is an essential component for transduction of apoptotic signals through the mitochondrial pathway (2,3). Upon apoptotic stimulation, an upstream stimulator like truncated BID (tBID) induces conformational changes in Bak to form oligomer channels in the mitochondrial membrane for cytochrome c release. The release of cytochrome c to the cytosol activates the caspase-9 pathway and eventually leads to cell death (4,5).

$108
250 PCR reactions
500 µl
SimpleChIP® Human CDKN1A Intron 1 Primers contain a mix of forward and reverse PCR primers that are specific to intron 1 of the human CDKN1A gene. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. The CDKN1A gene is an inhibitor of the cell cycle and is activated by Smad proteins in response to TGF-β signaling.
REACTIVITY
Human

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Paired box (PAX) proteins are a family of transcription factors that play important and diverse roles in animal development (1). Nine PAX proteins (PAX1-9) have been described in humans and other mammals. They are defined by the presence of an amino-terminal "paired" domain, consisting of two helix-turn-helix motifs, with DNA binding activity (2). PAX proteins are classified into four structurally distinct subgroups (I-IV) based on the absence or presence of a carboxy-terminal homeodomain and a central octapeptide region. Subgroup I (PAX1 and 9) contains the octapeptide but lacks the homeodomain; subgroup II (PAX2, 5, and 8) contains the octapeptide and a truncated homeodomain; subgroup III (PAX3 and 7) contains the octapeptide and a complete homeodomain; and subgroup IV (PAX4 and 6) contains a complete homeodomain but lacks the octapeptide region (2). PAX proteins play critically important roles in development by regulating transcriptional networks responsible for embryonic patterning and organogenesis (3); a subset of PAX proteins also maintain functional importance during postnatal development (4). Research studies have implicated genetic mutations that result in aberrant expression of PAX genes in a number of cancer subtypes (1-3), with members of subgroups II and III identified as potential mediators of tumor progression (2).

$254
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: WTX (Wilms’ tumor gene on the X chromosome) is a developmentally regulated gene with a potentially important role in kidney development (1). Functional studies of WTX suggest that it acts as a tumor suppressor gene in renal cells by promoting β-catenin ubiquitination and degradation, thereby antagonizing WNT/β-catenin signaling (1,2). WTX is found to be inactivated in 30% of Wilms’ tumors, mostly by chromosomal deletion (3). Wilms’ tumor is a pediatric kidney cancer that arises from cells that fail to differentiate during kidney development (4). Inactivation of the WT1 tumor suppressor gene accounts for 10-15% of Wilms’ tumor cases (5). WTX has been shown to enhance WT1-mediated transactivation, suggesting a physiologically significant interaction between WT1 and WTX (6). WTX may be directly involved in the transcriptional regulation of cellular differentiation in the kidney through interactions with WT1 and other transcription factors (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: A2B5 Mouse mAb recognizes a cell surface ganglioside epitope that has been utilized as a marker for identification of various cell types. A2B5 Mouse mAb has been used to mark specific cell populations such as neuroendocrine cells, thymic epithelial cells (1), and glial precursors that give rise to type II astrocytes and oligodendrocytes (2-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: FAIM (Fas apoptosis inhibitory molecule) was identified as a protein that was inducibly expressed in B lymphocytes resistant to Fas-mediated apoptosis (1). Expression of FAIM inhibits receptor-mediated apoptosis in B cells as well as other cell types (1-3). FAIM is expressed in germinal center B cells, is positively regulated by IRF-4, and is also capable of inducing IRF-4 expression in a feed-forward mechanism (4). FAIM also regulates T cell receptor-mediated apoptosis by modulating Akt activation and Nur77 expression (2). Knockout mice for FAIM show an increased sensitivity to Fas-mediated apoptosis within B and T cells as well as hepatocytes (5). An alternatively spliced form of FAIM, termed FAIM-L, is found predominantly in the brain (6). In the nervous system, the originally identified FAIM does not appear to play a role in apoptosis, but rather can promote neurite outgrowth through the activation of Erk and NF-κB pathways (7). In contrast, FAIM-L does inhibit neuronal cell death triggered by death receptors (3).