Microsize antibodies for $99 | Learn More >>

Product listing: MAGE-A3 (E9S4X) Rabbit mAb, UniProt ID P43357 #38896 to SKAR α/β Antibody, UniProt ID Q9BY77 #3794

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cancer/testis antigens (CTAs) are a family of more than 100 proteins whose normal expression is largely restricted to immune privileged germ cells of the testis, ovary, and trophoblast cells of the placenta. Although most normal somatic tissues are void of CTA expression, due to epigenetic silencing of gene expression, their expression is upregulated in a wide variety of human solid and liquid tumors (1,2). As such, CTAs have garnered much attention as attractive targets for a variety of immunotherapy-based approaches to selectively attack tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Myelin-associated glycoprotein (MAG), which contains five immunoglobulin-like domains, is a highly glycosylated protein (1). MAG is a component of all myelinated internodes, whether formed by oligodendrocytes in the central nervous system (CNS) or by Schwann cells in the peripheral nervous system (PNS) (2), and has several functions. A known function of MAG is its inhibition of axonal regeneration after injury. It inhibits axonal outgrowth from adult dorsal root ganglion and in postnatal cerebellar, retinal, spinal, hippocampal, and superior cervical ganglion neurons (3). Interaction between MAG and several other molecules on the innermost wrap of myelin and complementary receptors on the opposing axon surface are required for long-term axon stability. Without MAG, myelin is still expressed, but long-term axon degeneration and altered axon cytoskeleton structure can be seen (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Interleukin-2 inducible T-cell kinase (Itk, Emt or Tsk) is a member of the non-receptor protein tyrosine kinases. Family members of Itk include Tec, Btk, Rlk and Bmx and are all defined by a common structure: an amino-terminal PH domain, a Tec-homology domain and a SH3 and SH2 domain followed by a carboxy-terminal kinase domain (1). Tec, Rlk and Itk are expressed in T cells and activated in response to T cell receptor (TCR) engagement. Data demonstrate that Itk functions in signal transduction downstream of TCR and activates PLCgamma1 and Erk. Lck directly activates Itk through phosphorylation in the conserved activation loop at Tyr511, and furthermore, Itk is autophosphorylated in the SH3 domain at Tyr180. Itk-Y180F is still capable of phosphorylating PLCgamma1 in contrast to Itk-Y511F, which has lost that function (2-3). Itk -/- mice show reduced lung inflammation, eosinophil infiltration and mucous production in response to allergic asthma induction. Thus, Itk could become a desirable target for anti-asthmatic treatments (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: While overcoming the G1/S checkpoint to commence DNA replication requires cyclin E, and traversing the G2/M checkpoint to initiate mitosis requires cyclin B to be present, cyclin A seems to be required for both S-phase and M-phase (1). A number of studies have described the ability of over-expressed cyclin A to accelerate the G1 to S transition causing DNA replication, and cyclin A antisense DNA can prevent DNA replication (2-4). Cyclin A availability is apparently the rate-limiting step for entry into mitosis, and cyclin A is required for completion of prophase (5). At late prophase, cyclin A may no longer be necessary as cdc2/cyclinB1 becomes active (5).

$259
100 µg
This Cell Signaling Technology antibody is conjugated to PerCP-Cy5.5® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: Cluster of Differentiation 8 (CD8) is a disulphide-linked heterodimer consisting of the unrelated α and β subunits. Each subunit is a glycoprotein composed of a single extracellular Ig-like domain, a polypeptide linker, a transmembrane part and a short cytoplasmic tail. On T cells, CD8 is the coreceptor for the T cell receptor (TCR), and these two distinct structures recognize the Antigen–Major Histocompatibility Complex (MHC). Specifically, the Ig-like domain of CD8α interacts with the α3-domain of the MHC class I molecule. CD8 ensures specificity of the TCR–antigen interaction, prolongs the contact between the T cell and the antigen presenting cell, and the α chain recruits the tyrosine kinase Lck, which is essential for T cell activation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD64 (FcgammaRI), CD32 (FcgammaRII) and CD16 (FcgammaRIII) are three classes of the immunoglobulin superfamily. CD64 has a high affinity for IgG with three Ig-like domains while CD32 and CD16 have low affinities with two Ig-like domains. Two genes encode CD16-A and CD16-B resulting only in a 6 amino acid difference in their ectodomains. However, CD16-A has a transmembrane anchor versus CD16-B, which has a glycosylphosphatidylinositol (1). CD64, CD32 and CD16 are membrane glycoproteins that are expressed by all immunologically active cells and trigger various immune functions (activate B cells, phagocytosis, antibody-dependent cellular cytotoxicity, immune complex clearance and enhancement of antigen presentation) (2). CD16 cross-linking induces tyrosine phosphorylation (Tyr394) of Lck in NK cells (3). CD32 has tyrosine-based activation motifs in the cytoplasmic domain in contrast to CD16, which associates with molecules possessing these motifs (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Calretinin (29 kDa calbindin, calbindin 2) is a calcium-binding protein of the EF-hand family encoded by the CALB2 gene. It is differentially expressed from homologous family member calbindin-d28k in distinct neuronal populations of the retina, auditory system, and cerebellar granule cells (1, 2), and acts as a marker for specific neuronal subsets of the subthalamic nucleus and the substantia nigra (3). Calretinin has been shown to play an important role in modulating neuronal excitability and the induction of long-term potentiation (1). Research has shown that, pathologically, calretinin is a selective marker for epithelial mesothelioma, making it a diagnostic tool to differentiate from adenocarcinomas (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: L-arginine plays a critical role in regulating the immune system (1-3). In inflammation, cancer and certain other pathological conditions, myeloid cell differentiation is inhibited leading to a heterogeneous population of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs). MDSCs are recruited to sites of cancer-associated inflammation and express high levels of arginase-1 (4). Arginase-1 catalyzes the final step of the urea cycle converting L-arginine to L-ornithine and urea (5). Thus MDSCs increase the catabolism of L-arginine resulting in L-arginine depletion in the inflammatory microenvironment of cancer (4,6). The reduced availability of L-arginine suppresses T-cell proliferation and function and thus contributes to tumor progression (4,6). Arginase-1 is of great interest to researchers looking for a therapeutic target to inhibit the function of MDSCs in the context of cancer immunotherapy (7). In addition, research studies have demonstrated that Arginase-1 distinguishes primary hepatocellular carcinoma (HCC) from metastatic tumors in the liver, indicating its value as a potential biomarker in the diagnosis of HCC (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Adenosine deaminase (ADA) catalyzes adenosine degradation (1). Lack of this enzyme leads to the accumulation of toxic metabolites causing severe combined immunodeficiency (ADA-SCID), an autosomal recessive disorder. Differentiation and function of T cells, B cells, and natural killer cells are impaired in ADA-SCID patients leading to recurrent infections (1,2). Gene therapies for ADA-SCID were reported to correct the metabolic defect and restore the deficient immune function (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: YTH domain-containing protein 1 (YTHDC1) and YTH domain-containing protein 2 (YTHDC2) both belong to a family of proteins that bind to RNA. YTHDC1 and YTHDC2 both recognize and bind to N6-methyladenosine(m6A)-containing RNAs; binding is mediated through the YTH domains (1-3). m6A is a modification that is present at internal sites of mRNAs and some non-coding RNAs and plays a role in regulating mRNA splicing, processing, and stability. YTHDC1, also known as splicing factor YT521, regulates alternative splicing by functioning as a key regulator of exon-inclusion or exon-skipping. YTHDC1 promotes exon-inclusion by recruiting pre-mRNA splicing factor SRSF3 to regions containing m6A, while repressing exon-skipping by blocking SRSF10 binding to these same regions (2). Increased expression of YTHDC1 promotes malignant endometrial carcinoma (EC) through alternative splicing of vascular endothelial growth factor A (VEGF-A), resulting in an increase in VEGF-165 isoform and increased EC cell invasion (4). YTHDC2 functions to enhance the translation efficiency of target mRNAs and may play a role in spermatogenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Vacuolar protein sorting-associated protein 26A (VPS26A), together with VPS29 and VPS35, is part of a trimeric protein complex known as the cargo-selective complex (CSC) (1). The CSC is regarded as the core functional component of the retromer, a multimeric protein complex involved in selective transport of cargo proteins from endosomes to the trans-Golgi network or plasma membrane (2). As part of the CSC, VPS26A does not have intrinsic membrane-binding activity but relies on association with RAB7A for recruitment to the cytosolic face of the endosomal membrane (3,4). Retromer defects are associated with neurological disease, and VPS26A mutations have been linked to perturbed endosomal cargo sorting in atypical parkinsonism (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ubiquitin specific protease 39 (USP39) is a 65 kDa protein that plays an important role in pre-mRNA splicing, as well as mitotic spindle formation. It displays significant homology with ubiquitin C-terminal hydrolase proteins (UCHs), containing both an N-terminal zinc finger domain as well as UCH-1 and UCH-2-like domains also observed in the UCH2 family of proteins (1). However, USP39 lacks a catalytic cysteine residue found in UCHs and has been shown experimentally to lack peptidase activity (2). USP39 associates with the U4/U6-U5 tri-small nuclear ribonucleoprotein (U4/U6-U5 tri-snRNP) complex and is necessary for the formation of the mature spliceosome. Silencing of USP39 has been shown to adversely affect chromosome segregation and cytokinesis in U2OS cells, likely due to improper splicing of Aurora B and other mRNAs necessary for mitotic spindle formation and checkpoint function (2). In addition, USP39 has been found to be overexpressed in many types of cancers, and in most cases is associated with tumor progression and poor prognosis. Overexpression has been observed in pancreatic (3), prostate (4), colorectal (5,6), lung (6,7), gastric (8), and triple negative breast cancers (9), as well as melanoma (10) and hepatocellular carcinoma (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The process of SUMO conjugation to target proteins is similar to the molecular chain of events observed with ubiquitin (1). SUMO is conjugated to target proteins through the coordinated action of the cellular SUMO conjugation machinery consisting of E1, E2, and E3 enzymes (2). The canonical SUMO E1 activating enzyme is a heterodimer consisting of SAE1 (AOS1) and UBA2 (SAE2) subunits. Mature SUMO is activated by E1 in an ATP-dependent reaction that generates adenylated SUMO, which functions as a high-energy intermediate in the formation of a thioester linkage between SUMO and Cys173 of UBA2 (3,4). SUMO is subsequently transferred from UBA2 to the SUMO E2 conjugating enzyme, UBC9 (5). Recent evidence suggests that redox regulation of UBA2 serves as a physiologic mechanism to modulate the cellular level of sumoylated target proteins (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The UAP56 gene is found in the central MHC region and encodes a member of the DEAD-box family of RNA helicases (1). Also known as DDX39B and BAT1, UAP56 functions as an ATP-dependent splicing factor and RNA helicase in the evolutionary conserved transcription/export (TREX) complex. The TREX complex is recruited to sites of active transcription, where it travels along the length of the gene with RNA polymerase II and exports resulting mRNAs to the cytoplasm (2-8). Both UAP56 and its paralog DDX39A are hijacked by various viral replication machineries to enable viral reproduction and mRNA export (9-11). UAP56 and DDX39A have also been implicated in promoting the AR-V7 splice variant in advanced prostate cancers (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TRPV4 is a member of the transient receptor potential vanilloid (TRPV) family of ion channels, and functions as a Ca2+-permeant non-selective cation channel. TRPV4 channels are expressed in many cell types, with particular abundance in sensory and spinal neurons (1). TRPV4 channels play a role in maintaining cellular homeostasis, by facilitating transmembrane Ca2+ transport in response to various stimuli, including thermal stress, fatty acid metabolites, and hypotonicity (2). Mutations in the TRPV4 gene have consequently been attributed to a variety of pathological conditions. For example, constitutively active TRPV4 mutants can lead to excess Ca2+ influx, resulting in toxicity and degeneration of peripheral nerves (3). TRPV4-dependent Ca2+ influx was also shown to mediate strain-induced and TGFβ1-induced epithelial-mesenchymal transition (EMT), suggesting a mechanistic role for TRPV4-mediated Ca2+ transport in fibrosis and oncogenesis (4). Consistent with this, studies in capillary endothelial cells showed that mechanical strain-induced Ca2+ influx through TRPV4 promote focal adhesion and stress fiber remodeling, mediated specifically through integrins, PI3K, and downstream kinases including Rho and ROCK (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Testicular receptor 4 (TR4), also called TAK1 or NR2C2, is an orphan receptor in a distinct subclass of the steroid hormone nuclear receptor superfamily along with TR2 (1,2). TR4 forms heterodimers with TR2 and binds to DNA elements containing direct repeats (DRs) (3). TR4 plays a role in various processes, including neurogenesis, spermatogenesis, RNA metabolism, and protein translation (4-6). TR4 can interact with other hormone receptors such as AR and ER to influence protein-protein binding and target gene inactivation (7,8). High expression of TR4 correlates with prostate cancer metastasis and invasion through downstream targets such as CCL2 and Ezh2 (9-10). Expression of TR4 in other cancers such as NSCLC and testicular germ cell tumors has also been associated with poor prognosis (11-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Thymidine phosphorylase (TP) is a platelet-derived endothelial cell growth factor (PD-ECGF) that catalyzes the formation of thymine and 2-deoxy-D-ribose-1-phosphate from thymidine and orthophosphate (1). This intracellular enzyme is capable of both promoting angiogenesis and inhibiting apoptosis. Thymidine phosphorylase catalytic activity is required for its angiogenic function (2,3). Increased expression of TP/PD-ECGF is seen in a wide variety of different solid tumors and inflammatory diseases and is often associated with poor prognosis (4,5). Alternatively, TP can activate fluorouracil derivative (DFUR) prodrugs and increase the antitumor activity of the related treatment (1,5). The use of thymidine phosphorylase as a cancer therapeutic target has been studied extensively, with emphasis on either inhibiting TP enzymatic activity or increasing enzyme induction with concomitant DFUR treatment (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TNFRSF8/CD30 is a type-I transmembrane glycoprotein that is a member of the TNFR superfamily. CD30 is synthesized as a precursor protein that undergoes extensive posttranslational modification before becoming embedded in the plasma membrane as a 120-kDa transmembrane protein (1,2). The expression of CD30 is upregulated in activated T-cells and may trigger costimulatory signaling pathways upon its engagement (3,4). While its expression is normally restricted to subsets of activated T-cells and B-cells, CD30 expression is robustly upregulated in hematologic malignancies, such as Hodgkin’s lymphoma (HL), anaplastic large cell lymphoma (ALCL), and adult T-cell leukemia, thus making it an attractive target for therapeutic intervention (5,6). Research studies have suggested that in certain disease contexts, CD30 recruits TRAF2 and TRAF5 adaptor proteins to drive NF-kappa B activation, aberrant cell growth, and cytokine production (7-9). CD30 signaling is also regulated by TACE-dependent proteolytic cleavage of its ectodomain, which results in reduced CD30L-dependent activation of CD30+ cells (10, 11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Tropomodulin-1 (TMOD1) belongs to a conserved family of cytoskeletal proteins (TMOD1-4) that play an important role in modulating actin cytoskeleton dynamics. TMOD proteins function as actin capping proteins, which stabilize actin filaments by inhibiting both elongation and depolymerization (1). While many proteins have been identified that cap the rapidly growing barbed end of actin filaments, TMODs are the only proteins thus far identified that cap the slowly growing pointed end (2). A research study in triple-negative breast cancer cells identified TMOD1 as a target of NF-κB signaling, and showed that increased TMOD1 expression was associated with enhanced tumor growth in a mouse xenograft model (3). Molecular expression of TMOD1 was also identified as part of a unique gene expression signature that could discriminate ALK-negative anaplastic large-cell lymphoma from other malignancy subtypes (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) is a multidomain guanine nucleotide exchange factor (GEF) protein that activates Rac1, a GTPase involved in cytoskeletal dynamics that regulate cell migration, growth and survival. TIAM1 also has been identified as an inhibitor of the YAP/TAZ signaling pathway, with two distinct subcellular mechanisms of action: (1) promoting cytoplasmic (proteosomal) degradation of YAP and TAZ; and (2) blocking the transcriptional co-activator functions of YAP and TAZ in the nucleus (3,4). The effects of TIAM1 on tumor development are also complex and context-dependent. For example, it has been reported that TIAM1 can promote tumor growth and progression in some contexts, while antagonizing tumor metastasis and invasion in other contexts (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: THEX1 (3’hExo) is a 3’ exonuclease that may play a role in the degradation of histone mRNA transcripts (1). A recently identified member of the DEDDh 3' exonuclease family, THEX1 binds the conserved stem-loop structure found at the 3’ end of mRNA in vitro (2). The binding of THEX1 to mRNA requires the presence of a terminal ACCCA sequence and is enhanced by the concurrent binding of stem-loop binding protein (SLBP). Cleavage of histone mRNA by THEX1 exonuclease may help produce the rapid turnover of histone mRNA transcripts associated with the completion of DNA replication (3). Additional evidence suggests that THEX1 may be responsible for excising the remaining few 3’ nucleotides following cleavage by a different enzyme (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Thanatos-associated protein (Thap) proteins are a family of cellular factors that are characterized by an evolutionarily conserved protein motif similar to the DNA-binding domain of Drosophila P element transposase (1). There are 12 known human Thap proteins that all act as site-specific DNA-binding factors involved in transcriptional regulation, cell proliferation, chromatin modification, and apoptosis (2-4). Human Thap11 has been shown to suppress cell growth through transcriptional suppression of c-Myc (5). The mouse homolog of Thap11, Ronin, has been identified as an essential factor underlying embryogenesis in mouse embryonic stem cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tau is a heterogeneous microtubule-associated protein that promotes and stabilizes microtubule assembly, especially in axons. Six isoforms with different amino-terminal inserts and different numbers of tandem repeats near the carboxy terminus have been identified, and tau is hyperphosphorylated at approximately 25 sites by Erk, GSK-3, and CDK5 (1,2). Phosphorylation decreases the ability of tau to bind to microtubules. Neurofibrillary tangles are a major hallmark of Alzheimer's disease; these tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. In particular, phosphorylation at Ser396 by GSK-3 or CDK5 destabilizes microtubules. Furthermore, research studies have shown that inclusions of tau are found in a number of other neurodegenerative diseases, collectively known as tauopathies (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tau is a heterogeneous microtubule-associated protein that promotes and stabilizes microtubule assembly, especially in axons. Six isoforms with different amino-terminal inserts and different numbers of tandem repeats near the carboxy terminus have been identified, and tau is hyperphosphorylated at approximately 25 sites by Erk, GSK-3, and CDK5 (1,2). Phosphorylation decreases the ability of tau to bind to microtubules. Neurofibrillary tangles are a major hallmark of Alzheimer's disease; these tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. In particular, phosphorylation at Ser396 by GSK-3 or CDK5 destabilizes microtubules. Furthermore, research studies have shown that inclusions of tau are found in a number of other neurodegenerative diseases, collectively known as tauopathies (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Synaptogyrin, or SYNGR, are a family of tyrosine-phosphorylated proteins, including neuronal SYNGR1 and SYNGR3 that are found in synaptic vesicles and contribute to the proper synapse function. Synaptogyrin-2 (SYNGR2) expresses ubiquitously and it is not only associated with synaptic vesicles, but also plays an important role in exocytosis processes (1,3). In addition, it has been shown that SYNGRs modulate calcium currents in excitable cells during potassium chloride-dependent exocytosis (3). SYNGR3 and SYNGR1 specifically localized in synaptic vesicles. SYNGR1 modulates synaptic vesicle function similar to SYNGR3 (2,3). SYNGR1 and SYNGR3 contribute to the neurotransmitter release in neurons by interactions with the GABA and VGLUT transporters in primary neurons and in C. elegans (4-6). SYNGRs are associated with disease including Schizophrenia (7,8) and Alzheimer's disease (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Western Blotting

Background: Somatostatin receptors are part of the super family of G protein-coupled receptors. Five genes encoding six different somatostatin receptor subtypes (SSTR1, SSTR2A, SSTR2B, SSTR3, SSTR4, and SSTR5) have been cloned (1). Somatostatin receptors are activated by somatostatin, a neuropeptide that acts as a neurotransmitter in the brain that regulates hormone secretion from endocrine tissues (2). Somatostatin receptors are found to be highly expressed on human neuroendocrine tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SLAMF6 (CD352/NTB-A) is a type-I transmembrane glycoprotein belonging to the signaling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors. Like other members of the SLAM receptor family, SLAMF6 contains Ig-like domains within its extracellular region and conserved tyrosine-based signaling motifs within its intracellular domain that, when phosphorylated, bind to the SAP and EAT-2 signaling adaptors (1). SLAMF6 is expressed on the surface of multiple types of immune cells, such as those of the B, T, and NK lineages. Its activation is triggered by homotypic interactions involving its extracellular domain (1-3). Indeed, research studies have shown that in T-cells, SLAMF6 engagement facilitates activation and cytokine production (4). Similarly, homotypic ligand-mediated engagement of SLAMF6 on NK cells activates signaling cascades that drive proliferation, cytotoxicity, and cytokine production (1,5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase downstream of phosphoinositide-3 kinase (PI3K) and the target of rapamycin, FRAP/mTOR. p70 S6 kinase is required for cell growth and cell cycle progression (1,2). SKAR is a recently discovered substrate of S6K1. SKAR exists in two isoforms, α and β, the latter having a 29 amino acid truncation. Phosphorylation of SKAR is mitogen-induced and sensitive to rapamycin. Reduction in SKAR protein levels results in decreased cell size, further implicating SKAR in cell growth control (3).