Microsize antibodies for $99 | Learn More >>

Product listing: Organelle Localization IF Antibody Sampler Kit, UniProt ID O00559 #8653 to Phospho-PRAS40 (Thr246) (D4D2) XP® Rabbit mAb, UniProt ID Q96B36 #13175

The Organelle Localization IF Antibody Sampler Kit provides an economical means for identification of cellular organelles by fluorescence immunocytochemistry (IF-IC). This kit includes enough primary antibody to perform at least twenty IF-IC tests or two western blots with each antibody.
$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: PDCD4 (programmed cell death protein 4) was identified as a suppressor of neoplastic transformation (1). It interacts with eukaryotic initiation factors eIF4AI and eIF4AII (2). PDCD4 colocalizes with eIF4A in the cytoplasm and inhibits the activity of eIF4A as an ATP-dependent RNA helicase (2). PDCD4 inhibits cap-dependent translation (2). Upon stimulation by mitogens, PDCD4 is phosphorylated on Ser67 by S6K1 kinase and then degraded through the ubiquitin pathway leading to enhanced translation and cell growth (3).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Huntington's Disease (HD) is a fatal neurodegenerative disorder characterized by psychiatric, cognitive, and motor dysfunction. Neuropathology of HD involves specific neuronal subpopulations: GABA-ergic neurons of the striatum and neurons within the cerebral cortex selectively degenerate (1,2). The genetic analysis of HD has been the flagship study of inherited neurological diseases from initial chromosomal localization to identification of the gene.Huntingtin is a large (340-350 kD) cytosolic protein that may be involved in a number of cellular functions such as transcription, gastrulation, neurogenesis, neurotransmission, axonal transport, neural positioning, and apoptosis (2,3). The HD gene from unaffected individuals contains between 6 and 34 CAG trinucleotide repeats, with expansion beyond this range causing the onset of disease symptoms. A strong inverse correlation exists between the age of onset in patients and the number of huntingtin gene CAG repeats encoding a stretch of polyglutamine peptides (1,2). The huntingtin protein undergoes numerous post-translational modifications including phosphorylation, ubiquitination, sumoylation, palmitoylation, and cleavage (2). Phosphorylation of Ser421 by Akt can partially counteract the toxicity that results from the expanded polyglutamine tract. Varying Akt expression in the brain correlates with regional differences in huntingtin protein phosphorylation; this pattern inversely correlates with the regions that are most affected by degeneration in diseased brain (2). A key step in the disease is the proteolytic cleavage of huntingtin protein into amino-terminal fragments that contain expanded glutamine repeats and translocate into the nucleus. Caspase mediated cleavage of huntingtin at Asp513 is associated with increased polyglutamine aggregate formation and toxicity. Phosphorylation of Ser434 by CDK5 protects against cleavage (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Cyclin-dependent kinase 12 (CDK12/CRKRS/CRK7) is composed of a central CTD kinase domain, several proline-rich regions, and several amino-terminal arginine/serine (RS) motifs common to splicing factors (1). CDK12 is ubiquitously expressed and forms a complex with cyclin K that regulates phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (1-4). CDK12 is important for expression of a subset of long genes with high numbers of exons including some regulators of the DNA damage response, such as breast and ovarian cancer type 1 susceptibility protein 1 (BRCA1) and ataxia telangiectasia and Rad3-related (ATR) (3). Depletion of CDK12 results in spontaneous DNA damage and increased sensitivity to DNA damage agents (3). Research studies have shown that CDK12 is recurrently mutated in high-grade ovarian cancer (5,6). In addition, high levels of CDK12 are required to maintain pluripotency of embryonic stem cells (7).

Stat Antibody Sampler Kit II provides an economical means to examine the complete Stat family: Stat1-6. The kit contains enough a primary antibody to perform two western blot experiments with each primary antibody.

Background: Jaks (Janus Kinases) and Stats (Signal Transducers and Activators of Transcription) are utilized by receptors for a wide variety of ligands including cytokines, hormones, growth factors and neurotransmitters. Jaks, activated via autophosphorylation following ligand-induced receptor aggregation, phosphorylate tyrosine residues on associated receptors, Stat molecules and other downstream signaling proteins (1,2). The phosphorylation of Stat proteins at conserved tyrosine residues activates SH2-mediated dimerization followed rapidly by nuclear translocation. Stat dimers bind to IRE (interferon response element) and GAS (gamma interferon-activated sequence) DNA elements, resulting in the transcriptional regulation of downstream genes (1,2). The remarkable range and specificity of responses regulated by the Stats is determined in part by the tissue-specific expression of different cytokine receptors, Jaks and Stats (2,3), and by the combinatorial coupling of various Stat members to different receptors. Serine phosphorylation in the carboxy-terminal transcriptional activation domain has been shown to regulate the function of Stat1, -2, -3, -4 and -5 (1). Phosphorylation of Stat3 at Ser727 via MAPK or mTOR pathways is required for optimal transcriptional activation in response to growth factors and cytokines including IFN-gamma and CNTF (4,5). Jak/Stat pathways also play important roles in oncogenesis, tumor progression, angiogenesis, cell motility, immune responses and stem cell differentiation (6-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: RPA70 (HSSB, REPA1, RF-A, RP-A, p70) is a component of a heterotrimeric complex, composed of 70, 32/30 and 14 kDa subunits, collectively known as RPA. RPA is a single stranded DNA binding protein, whose DNA binding activity is believed to reside entirely in the 70 kDa subunit. The complex is required for almost all aspects of cellular DNA metabolism such as DNA replication (1-3), recombination, cell cycle and DNA damage checkpoints, and all major types of DNA repair including nucleotide excision, base excision, mismatch and double-strand break repairs (4-7). In response to genotoxic stress in eukaryotic cells, RPA has been shown to associate with the Rad9/Rad1/Hus1 (9-1-1) checkpoint complex (8). RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) (9-11). Phosphorylation of RPA32 occurs at serines 4, 8 and 33 (11). Hyperphosphorylation may alter RPA-DNA and RPA-protein interactions. In addition to the checkpoint partners, RPA interacts with a wide variety of protein partners, including proteins required for normal replication such as RCF, PCNA and Pol α, and also proteins involved in SV40 replication, such as DNA polymerase I and SV40 large T antigen (10,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Blimp-1 (B lymphocyte-induced maturation protein) is a nuclear zinc-finger containing transcriptional repressor that is considered a master regulator of terminal B-cell development (1). The human homolog, PRDI-BF1, was identified by its ability to bind to the PRDI element on the IFN-β promoter and can inhibit virus-mediated IFN-β production (2). Expression of Blimp-1 is sufficient to drive terminal differentiation of BCL1 lymphoma cells into antibody secreting plasma cells, increasing the expression of the cell surface marker Syndecan-1 (1). In the B-cell lineage, Blimp-1 is specifically expressed in antibody-secreting cells including activated B and plasma cells. In addition, Blimp-1 has been found during macrophage differentiation (3) and in a subset of T-cells (4,5) suggesting it may play a wider role in homeostasis and differentiation (6). Mechanistically, Blimp-1 is thought to act by recruiting chromatin-modifying enzymes including histone deacetylases (7) and methyltransferases (8,9). Target genes of Blimp-1 transcriptional repression with potential roles in differentiation include c-Myc (10), CIITA (11), Pax5 (12), Spi-B, and Id3 (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Sodium-dependent neutral amino acid transporter type 2 (ASCT2 or SLC1A5) is a neutral amino acid transporter that regulates the uptake of essential amino acids in conjunction with the SLC7A5 bilateral transporter (1,2). ASCT2 appears to be the major glutamine transporter in hepatoma cells and is thought to provide essential amino acids needed for tumor growth (3). Additional evidence suggests that ASCT2 plays a role in activating mTORC1 signaling and is required to suppress autophagy (4,5). Cell surface ASCT2 serves as a receptor for several mammalian interference retroviruses associated with cases of infectious immunodeficiency; variation in a small region of an extracellular loop (ECL2) may be responsible for species-specific differences in receptor function (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Aurora A (AIK) is a cell cycle-regulated Ser/Thr protein kinase that is overexpressed in many tumor cell lines (1-3). Phosphorylation of Aurora A at Thr288 within the kinase activation loop results in a significant increase in its activity and may target the protein for proteasomal degradation during mitosis (4). The closely-related kinase Aurora B (AIM1) has been implicated in multiple mitotic events (5), and siRNA silencing of Aurora B expression results in reduced histone H3 phosphorylation, aberrant chromosome alignment/segregation, and altered survivin localization (6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation

Background: Epithelial cell adhesion and activating molecule (EpCAM/CD326) is a transmembrane glycoprotein that mediates Ca2+-independent, homophilic adhesions on the basolateral surface of most epithelial cells. EpCAM is not expressed in adult squamous epithelium, but it is highly expressed in adeno and squamous cell carcinomas (1). Research studies identified EpCAM as one of the first tumor-associated antigens, and it has long been a marker of epithelial and tumor tissue. Investigators have shown that EpCAM is highly expressed in cancer cells (reviewed in 2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Myc/Max/Mad network function as transcriptional regulators with roles in various aspects of cell behavior including proliferation, differentiation and apoptosis (1). These proteins share a common basic-helix-loop-helix leucine zipper (bHLH-ZIP) motif required for dimerization and DNA-binding. Max was originally discovered based on its ability to associate with c-Myc and found to be required for the ability of Myc to bind DNA and activate transcription (2). Subsequently, Max has been viewed as a central component of the transcriptional network, forming homodimers as well as heterodimers with other members of the Myc and Mad families (1). The association between Max and either Myc or Mad can have opposing effects on transcriptional regulation and cell behavior (1). The Mad family consists of four related proteins; Mad1, Mad2 (Mxi1), Mad3 and Mad4, and the more distantly related members of the bHLH-ZIP family, Mnt and Mga. Like Myc, the Mad proteins are tightly regulated with short half-lives. In general, Mad family members interfere with Myc-mediated processes such as proliferation, transformation and prevention of apoptosis by inhibiting transcription (3,4).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Receptor autophosphorylation follows binding of the IGF-I and IGF-II ligands. Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ras Homolog Enriched in Brain (Rheb) is an evolutionarily conserved member of the Ras family of small GTP-binding proteins originally found to be rapidly induced by synaptic activity in the hippocampus following seizure (1). While it is expressed at relatively high levels in the brain, Rheb is widely expressed in other tissues and may be induced by growth factor stimulation. Like other Ras family members, Rheb triggers activation of the Raf-MEK-MAPK pathway (2). Biochemical and genetic studies demonstrate that Rheb has an important role in regulating the insulin/TOR signaling pathway (3-6). The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that acts as a sensor for ATP and amino acids, balancing the availability of nutrients with translation and cell growth. The tuberin/hamartin (TSC2/TSC1) complex inhibits mTOR activity indirectly by inhibiting Rheb through the tuberin GAP activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Dog, Hamster, Human, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Syk is a protein tyrosine kinase that plays an important role in intracellular signal transduction in hematopoietic cells (1-3). Syk interacts with immunoreceptor tyrosine-based activation motifs (ITAMs) located in the cytoplasmic domains of immune receptors (4). It couples the activated immunoreceptors to downstream signaling events that mediate diverse cellular responses, including proliferation, differentiation, and phagocytosis (4). There is also evidence of a role for Syk in nonimmune cells and investigators have indicated that Syk is a potential tumor suppressor in human breast carcinomas (5). Tyr323 is a negative regulatory phosphorylation site within the SH2-kinase linker region in Syk. Phosphorylation at Tyr323 provides a direct binding site for the TKB domain of Cbl (6,7). Tyr352 of Syk is involved in the association of PLCγ1 (8). Tyr525 and Tyr526 are located in the activation loop of the Syk kinase domain; phosphorylation at Tyr525/526 of human Syk (equivalent to Tyr519/520 of mouse Syk) is essential for Syk function (9).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CrkL, a 39 kDa adaptor protein, has a key regulatory role in hematopoietic cells. CrkL has one SH2 and two SH3 domains, with 60% homology to CrkII (1). The amino-terminal SH3 domain of CrkL binds proteins such as C3G, SOS, PI3K, c-Abl and BCR/Abl. The SH2 domain of CrkL can bind to tyrosine-phosphorylated proteins such as Cbl, HEF1, CAS and paxillin (2,3). CrkL is involved in various signaling cascades initiated by different cytokines and growth factors. The biological outcomes of the Crk-activated signal transduction include the modulation of cell adhesion, cell migration and immune cell responses (4). CrkL is a prominent substrate of the BCR/Abl oncoprotein in chronic myelogenous leukemia and binds to both BCR/Abl and c-Abl (5). CrkL is prominently and constitutively tyrosine phosphorylated in CML neutrophils and is not phosphorylated in normal neutrophils. Moreover, stimulation of normal neutrophils with cytokines and agonists does not induce tyrosine phosphorylation of this protein (6), indicating that it may be a useful target for therapeutic intervention or as a disease marker. Tyr207 in CrkL is the BCR/Abl phosphorylation site (7).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Lyn, one of the Src family members, is predominantly expressed in hematopoietic cells (1). Two tyrosine residues have been reported to play a crucial role in the regulation of protein tyrosine kinases of the Src family. Autophosphorylation of Tyr396 (equivalent to Tyr416 of Src), located in the catalytic domain, correlates with enzyme activation. Csk-mediated phosphorylation of the carboxy-terminal Tyr507 (equivalent to Tyr527 of Src) inactivates the kinase. Tyrosine phosphorylation and activation of Lyn occurs upon association with cell surface receptors such as the B cell Ag receptor (BCR) and CD40 (2-4). Studies using knockout mice have shown that the net effect of Lyn deficiency is to render B cells hypersensitive to BCR stimulation (5-7), suggesting that the most critical role for Lyn in vivo is in the down-regulation of B cell responses. Lyn is also involved in controlling the migration and development of specific B cell populations (8).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Estrogen receptor α (ERα), a member of the steroid receptor superfamily, contains highly conserved DNA binding and ligand binding domains (1). Through its estrogen-independent and estrogen-dependent activation domains (AF-1 and AF-2, respectively), ERα regulates transcription by recruiting coactivator proteins and interacting with general transcriptional machinery (2). Phosphorylation at multiple sites provides an important mechanism to regulate ERα activity (3-5). Ser104, 106, 118, and 167 are located in the amino-terminal transcription activation function domain AF-1, and phosphorylation of these serine residues plays an important role in regulating ERα activity. Ser118 may be the substrate of the transcription regulatory kinase CDK7 (5). Ser167 may be phosphorylated by p90RSK and Akt (4,6). According to the research literature, phosphorylation at Ser167 may confer tamoxifen resistance in breast cancer patients (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L) (1), also termed BNIP3α (2), B5 (3), and Nix (4), is a member of the Bcl-2 family of apoptotic regulators with highest homology to BNIP3. BNIP3L can bind BNIP3, Bcl-xL, and Bcl-2 (1-5). BNIP3L forms homodimers that withstand denaturing by SDS and reducing conditions (5). BNIP3L is a mitochondrial protein and knockout studies suggest that BNIP3L regulates autophagic clearance of damaged mitochondria during erythroid maturation via mitochondrial autophagy (6,7). It has been shown that the expression of BNIP3L is up-regulated during terminal erythroid differentiation (6-8), as well as in tumor cell lines during hypoxia (9-11). BNIP3L directly regulates the elimination of mitochondria through its ability to bind to and recruit important components of the autophagic machinery, including LC3/Atg8 and GABARAP proteins, via its amino-terminal LC3-interacting region (LIR) (12). BNIP3L may also indirectly activate phagophore formation either via the recruitment of autophagy proteins or by binding Bcl-xL, which in turn releases Beclin-1 (13). BNIP3L/Nix also plays a pivotal role in Parkin-mediated mitochondrial autophagy via its ability to mediate the mitochondrial translocation of Parkin (14). Activated BNIP3L can promote the opening of mitochondrial permeability transition pores resulting in mitochondrial depolarization, generation of reactive oxygen species, and induction of necrosis. Due to its involvement in cell death and autophagy, research scientists have implicated BNIP3L in heart disease and cancer (13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes the two-electron reduction of quinones and their derivatives (1,2). This enzyme protects cells against redox cycling and oxidative stress (1,3). The expression of NQO1 is increased in liver, colon and breast tumors and non-small cell lung cancer (NSCLC) compared with the normal tissues (1,2). Moreover, expression levels are also elevated in developing tumors, suggesting a role for NQO1 in the prevention of tumor development (1). Studies on NQO1 knockout mice suggest that the lack of NQO1 enzymatic activity changes intracellular redox states resulting in a reduction in apoptosis, which in turn leads to myeloid hyperplasia of bone marrow (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SHP-2 (PTPN11) is a ubiquitously expressed, nonreceptor protein tyrosine phosphatase (PTP). It participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrices in the control of cell growth, differentiation, migration, and death (1). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of several growth factor receptors and cytokines (2). In addition to its role in Gab1-mediated Erk activation, SHP-2 attenuates EGF-dependent PI3 kinase activation by dephosphorylating Gab1 at p85 binding sites (3). SHP-2 becomes phosphorylated at Tyr542 and Tyr580 in its carboxy-terminus in response to growth factor receptor activation (4). These phosphorylation events are thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (5). Mutations in the corresponding gene result in a pair of clinically similar disorders (Noonan syndrome and LEOPARD syndrome) that may result from abnormal MAPK regulation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Transferrin receptor 1 (CD71, TFRC) is a type II transmembrane receptor and carrier protein responsible for the uptake of cellular iron through receptor-mediated endocytosis (1). Neutral pH at the cell surface promotes binding of the iron-binding glycoprotein transferrin (Tf) to the CD71 receptor. The receptor-ligand complex enters the cell through receptor-mediated endocytosis and is internalized into an endosome. Relatively lower endosomal pH leads to a change in the local charge environment surrounding the iron-transferrin binding site and results in the release of iron (2). The receptor-ligand complex is recycled to the cell surface where transferrin dissociates from the CD71 receptor (2). Ubiquitously expressed transferrin receptor is continuously recycled and undergoes clathrin-mediated endocytosis regardless of ligand binding state. The interaction between receptor and ligand has been studied in detail. The helical domain of CD71 directly interacts with the transferrin C-lobe and induces a conformation change in Tf to facilitate the transport process (3). Interaction between the receptor CD71 and transferrin is mediated by the membrane protein hemochromatosis (HFE). HFE binds the α-helical domain of CD71, blocking formation of the CD71-transferrin complex and inhibiting iron uptake (4,5). In addition to binding transferrin, CD71 also interacts with H-ferritin at the cell surface and transports this intracellular iron storage protein to cellular endosomes and lysosomes (6). Additional studies indicate that the transferrin receptor is an evolutionarily conserved receptor for a number or arenaviruses and at least one retrovirus (7,8). Aberrant expression of CD71 is seen in a number of cancers, including thyroid carcinomas, lymphomas, and T-lineage leukemias, suggesting a possible therapeutic role for targeted inhibition of the transferrin receptor (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Insulin receptor substrate 1 (IRS-1) is one of the major substrates of the insulin receptor kinase (1). IRS-1 contains multiple tyrosine phosphorylation motifs that serve as docking sites for SH2-domain containing proteins that mediate the metabolic and growth-promoting functions of insulin (2-4). IRS-1 also contains over 30 potential serine/threonine phosphorylation sites. Ser307 of IRS-1 is phosphorylated by JNK (5) and IKK (6) while Ser789 is phosphorylated by SIK-2, a member of the AMPK family (7). The PKC and mTOR pathways mediate phosphorylation of IRS-1 at Ser612 and Ser636/639, respectively (8,9). Phosphorylation of IRS-1 at Ser1101 is mediated by PKCθ and results in an inhibition of insulin signaling in the cell, suggesting a potential mechanism for insulin resistance in some models of obesity (10).

The Autophagy Induction (ULK1 Complex) Antibody Sampler Kit provides an economical means of detecting target proteins in the ULK1 complex. The kit contains enough antibody to perform at least two western blot experiments per primary antibody.
$759
30 rxns
1 Kit
The Active Rho Detection Kit provides all reagents necessary for measuring activation of Rho GTPase in the cell. GST-Rhotekin-RBD fusion protein is used to bind the activated form of GTP-bound Rho, which can then be immunoprecipitated with glutathione resin. Rho activation levels are then determined by western blot using a Rho Rabbit Antibody.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ras superfamily of small GTP-binding proteins (G proteins) comprise a large class of proteins (over 150 members) that can be classified into at least five families based on their sequence and functional similarities: Ras, Rho, Rab, Arf, and Ran (1-3). These small G proteins have both GDP/GTP-binding and GTPase activities and function as binary switches in diverse cellular and developmental events that include cell cycle progression, cell survival, actin cytoskeletal organization, cell polarity and movement, and vesicular and nuclear transport (1). An upstream signal stimulates the dissociation of GDP from the GDP-bound form (inactive), which leads to the binding of GTP and formation of the GTP-bound form (active). The activated G protein then goes through a conformational change in its downstream effector-binding region, leading to the binding and regulation of downstream effectors. This activation can be switched off by the intrinsic GTPase activity, which hydrolyzes GTP to GDP and releases the downstream effectors. These intrinsic guanine nucleotide exchange and GTP hydrolysis activities of Ras superfamily proteins are also regulated by guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound form and GTPase activating proteins (GAPs) that return the GTPase to its GDP-bound inactive form (4).

$141
20 µl
$348
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Many growth factors and hormones induce the phosphoinositide 3-kinase signaling pathway, which results in the activation of downstream effector proteins such as the serine/threonine kinase Akt (1,2). One known Akt substrate is a 40 kDa, proline-rich protein (PRAS40) that binds to 14-3-3 proteins (2). PRAS40 also binds mTOR to transduce Akt signals to the mTOR complex. Inhibition of mTOR signaling stimulates PRAS40 binding to mTOR, which in turn inhibits mTOR activity (3). PRAS40 interacts with raptor in mTOR complex 1 (mTORC1) in insulin-deprived cells and inhibits the activation of the mTORC1 pathway mediated by the cell cycle protein Rheb. Phosphorylation of PRAS40 by Akt at Thr246 relieves PRAS40 inhibition of mTORC1 (4). mTORC1 in turn phosphorylates PRAS40 at Ser183 (5).