20% off purchase of 3 or more products* | Learn More >>

Product listing: RKIP (D42F3) Rabbit mAb, UniProt ID P30086 #13006 to Erk5 (D3I5V) Rabbit mAb, UniProt ID Q13164 #12950

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding protein (PEBP) family that associates with Raf-1 and the MEK and MAP kinases (1). RKIP has been shown to form a complex with Raf-1, MEK, and Erk (2). Although MEK and Erk can simultaneously bind RKIP, the association between Raf-1 and RKIP and that of RKIP and MEK are mutually exclusive. Thus, RKIP competitively disrupts the Raf-1-MEK complex and effectively terminates signal transmission from Raf-1 to MAP kinases (2). The inhibitory effect of RKIP on MAP kinase signaling is eliminated by PKC phosphorylation of RKIP at Ser153 (3). PKC phosphorylation on Ser153 also promotes the association of RKIP with GRK2, which prevents GRK2-dependent internalization of GPCR (4). RKIP also interacts with modules of the NF-κB pathway, including NF-κB-inducing kinase (NIK), TAK1, IKKα and IKKβ (5). These interactions antagonize cytokine-induced activation of the NF-κB pathway (5). Restoration of RKIP expression is associated with the inhibition of prostate cancer metastasis, implying that RKIP may be a potential clinical target as a suppressor of tumor metastasis through inhibition of vascular invasion (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Spry1 is a member of the Sprouty (Spry) family proteins that was initially identified in Drosophila as an inhibitor of the FGF signaling pathway (1). There are four human Spry proteins (Spry1-4), encoded by different genes, and they all share a highly conserved carboxy-terminal cystine-rich Spry domain that is known to be essential for their receptor tyrosine kinase inhibitory function stimulated by various growth factors (1-3). Spry1 and other Spry proteins play a key role in embryonic development, tissue and organ formation, as well as growth in almost all living organisms (1-4). Spry proteins are considered tumor suppressors due to their inhibitory function in a variety of growth factor signaling pathways (2,3). Spry1 anchors itself to the membrane by palmitoylation and can translocate from the cytosol to the membrane by binding to caveolin-1 (5,6). Regulation of Spry1 protein function is thought to occur at various levels. Spry1 regulation includes transcriptional regulation by growth factors and kinases (1,4,7), post-transcriptional regulation by microRNA-21 (8), post-translational modifications including phosphorylation, dephosphorylation, ubiquitination and proteasomal degradation, and regulation by its interacting protein partners (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein ubiquitination requires the concerted action of the E1, E2, and E3 ubiquitin-conjugating enzymes. Ubiquitin is first activated through ATP-dependent formation of a thiol ester with ubiquitin-activating enzyme E1. The activated ubiquitin is then transferred to a thiol group of ubiquitin-carrier enzyme E2. The final step is the transfer of ubiquitin from E2 to an ε-amino group of the target protein lysine residue, which is mediated by ubiquitin-ligase enzyme E3 (1).Ubiquitin conjugating-enzyme 2T (UBE2T) is an E2 family member responsible for the ATP-dependent ubiquitin tagging of target proteins for degradation. Research studies indicate that UBE2T plays an important role in the Fanconi anemia pathway and that UBE2T expression is required for normal DNA repair through this pathway. Interaction between UBE2T and FANCL appears to stimulate UBE2T auto monoubiquitination, leading to UBE2T inactivation and negative regulation of the Fanconi anemia pathway (2-4). Additional research details upregulation of UBE2T expression in breast cancer cells and certain lung carcinomas, suggesting a possible involvement in these malignancies (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The DNA mismatch repair system (MMR) repairs post-replication DNA, inhibits recombination between nonidentical DNA sequences, and induces both checkpoint and apoptotic responses following certain types of DNA damage (1). MSH2 (MutS homologue 2) forms the hMutS-α dimer with MSH6 and is an essential component of the mismatch repair process. hMutS-α is part of the BRCA1-associated surveillance complex (BASC), a complex that also contains BRCA1, MLH1, ATM, BLM, PMS2 proteins, and the Rad50-Mre11-NBS1 complex (2). Mutations in MSH6 and other MMR proteins have been found in a large proportion of hereditary nonpolyposis colorectal cancer (Lynch Syndrome), the most common form of inherited colorectal cancer in the Western world (3). Mutations in MSH6 have been shown to occur in glioblastoma in response to temozolomide therapy and to promote temozolomide resistance (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: PSMD10/Gankyrin is an ankyrin-repeat chaperone protein that is involved in the assembly of the 19S regulatory particle of the proteasome (1). Reasearch studies have demonstrated that PSMD10 is oncogenic and is overexpressed in hepatocullar carcinomas (2). Investigators believe the oncogenicity of PSMD10 may be linked to its ability to bind and regulate the stability and activity of pRB, CDK4, MDM2, and RelA (2-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The mannose receptor (MR/CLEC13D/CD206/MMR/MRC1/Macrophage mannose receptor 1) is an endocytic receptor expressed by populations of dendritic cells, macrophages and nonvascular endothelium (1). The mannose receptor is a heavily glycosylated type I transmembrane protein with three types of extracellular domains and a short carboxy-terminal cytoplasmic domain with no apparent signaling motif (2-4). The extracellular portion of the protein is made up of a CR domain, which binds sulfated glycans, an FNII domain, which binds collagens, and eight C-type lectin domains, which bind carbohydrates containing mannose, fucose or GlcNAc (4-7). The receptor recycles between the plasma membrane and early endosomes (8). Functions include a role in antigen cross-presentation, clearance of endogenous proteins, pathogen detection and trafficking through lymphatic vessels (9-12).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Catalase catalyzes the conversion of hydrogen peroxide to water and oxygen (1). Research studies show that overexpression of this antioxidant enzyme increases the ability of pancreatic β-cells to scavenge reactive oxygen species (ROS), thereby protecting pancreatic β-cells from oxidative stress (2). The pancreatic β-cells overexpressing this enzyme are also protected from hydrogen peroxide-mediated lipotoxicity, providing further evidence for the importance of catalase in the pathogenesis of diabetes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Filamins are a family of dimeric actin binding proteins that function as structural components of cell adhesion sites. They also serve as a scaffold for subcellular targeting of signaling molecules (1). The actin binding domain (α-actinin domain) located at the amino terminus is followed by as many as 24 tandem repeats of about 96 residues and the dimerization domain is located at the carboxy terminus. In addition to actin filaments, filamins associate with other structural and signaling molecules such as β-integrins, Rho/Rac/Cdc42, PKC and the insulin receptor, primarily through the carboxy-terminal dimerization domain (1-3). Filamin A, the most abundant, and filamin B are widely expressed isoforms, while filamin C is predominantly expressed in muscle (1). Filamin A is phosphorylated by PAK1 at Ser2152, which is required for PAK1-mediated actin cytoskeleton reorganization (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Vacuole membrane protein 1 (VMP1, TMEM49) is a transmembrane protein localized to intracellular vacuoles that was originally described as a protein promoting vacuole formation in acinar cells associated with acute pancreatitis (1). Over-expression of VMP1 promotes vacuole formation and subsequent cell death (1). Additional research studies demonstrated that VMP1 expression might be induced by starvation or the mTOR inhibitor rapamycin, which triggers autophagy (2). VMP1 is targeted along with LC3 to autophagosome membranes (2). Knockdown of VMP1 can inhibit autophagosome formation (2). VMP1 interacts with beclin-1, a key autophagy protein that activates the class III PI3 kinase Vps34 (3). VMP1 functions in the degradation and clearance of zymogen-containing vacuoles during experimentally induced pancreatitis (4). During vacuole degradation and clearance, VMP1 interacts with the ubiquitin protease USP9X, suggesting a possible functional link between the molecular machinery of autophagy and the ubiquitin pathway. Orthologs of VMP1 from C. elegans (known as EPG-3), Drosophila (known as TANGO-5), and Dictyostelium, have been shown to play a role in membrane trafficking, organelle organization, and autophagy (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Survival of Motor Neuron 1 (SMN1) is essential for the maturation of small nuclear ribonucleoproteins (snRNPs) (1,2). SMN1 plays a role in the assembly of spliceosomal snRNPs in the cytoplasm, together with the Gemin proteins, and may also participate in the transport of snRNPs into the nucleus (3-6). SMN1 also participates in the maturation and turnover of snRNPs in nuclear foci Gemini bodies (gems) (7). In addition to the maturation of spliceosomal snRNPs, SMN1 has also been proposed to directly regulate pre-mRNA splicing (8). Researchers have found mutations and deletions of the SMN1 gene are found in 95% of Spinal Muscular Atrophy (SMA) neuromuscular disorder cases (1,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Myosin is composed of six polypeptide chains: two identical heavy chains and two pairs of light chains. Myosin light chain 2 (MLC2), also known as myosin regulatory light chain (MRLC), RLC, or LC20, has many isoforms with varying tissue distribution. Smooth muscle MLC2 is phosphorylated at Thr18 and Ser19 by myosin light chain kinase (MLCK) in a Ca2+/calmodulin-dependent manner (1). These phosphorylation events are correlated with myosin ATPase activity and smooth muscle contraction (2). Striated muscle contraction is regulated by the troponin-tropomyosin complex in thin actin filaments and by binding of Ca2+ to troponin C (3). Two types of myosin light chain are expressed in the heart, with myosin light chain 2v (MYL2, MLC-2v) expression restricted to the ventricles and myosin light chain 2a (MYL7, MLC-2a) found specific to the atria. Mutations in the corresponding MYL2 gene are found in patients diagnosed with a form of hypertrophic cardiomyopathy characterized by thickening of the mid-left ventricle.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors defined by the presence of a winged helix DNA binding domain called a Forkhead box (1). In humans, there are over 40 known Fox protein family members, divided into 19 subfamilies, which have evolved to regulate gene transcription in diverse and highly specialized biological contexts throughout development (2). Mutations that disrupt the expression of Fox gene family members have consequently been implicated in a broad array of human disorders, including immunological dysfunction, infertility, speech/language disorders, and cancer (3,4).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$269
100 µl
APPLICATIONS
REACTIVITY
Bovine, Dog, Human, Monkey, Mouse, Pig, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: All organisms respond to increased temperatures and other environmental stresses by rapidly inducing the expression of highly conserved heat shock proteins (HSPs) that serve as molecular chaperones to refold denatured proteins and promote the degradation of damaged proteins. Heat shock gene transcription is regulated by a family of heat shock factors (HSFs), transcriptional activators that bind to heat shock response elements (HSEs) located upstream of all heat shock genes (1). HSEs are highly conserved among organisms and contain multiple adjacent and inverse iterations of the pentanucleotide motif 5'-nGAAn-3'. HSFs are less conserved and share only 40% sequence identity. Vertebrate cells contain four HSF proteins: HSF1, 2 and 4 are ubiquitous, while HSF3 has only been characterized in avian species. HSF1 induces heat shock gene transcription in response to heat, heavy metals, and oxidative agents, while HSF2 is involved in spermatogenesis and erythroid cell development. HSF3 and HSF4 show overlapping functions with HSF1 and HSF2. The inactive form of HSF1 exists as a monomer that localizes to both the cytoplasm and nucleus, but does not bind DNA (1,2). In response to stress, HSF1 becomes phosphorylated, forms homotrimers, binds DNA and activates heat shock gene transcription (1,2). HSF1 activity is positively regulated by phosphorylation of Ser419 by PLK1, which enhances nuclear translocation, and phosphorylation of Ser230 by CaMKII, which enhances transactivation (3,4). Alternatively, HSF1 activity is repressed by phosphorylation of serines at 303 and 307 by GSK3 and ERK1, respectively, which leads to binding of 14-3-3 protein and sequestration of HSF1 in the cytoplasm (5,6). In addition, during attenuation from the heat shock response, HSF1 is repressed by direct binding of Hsp70, HSP40/Hdj-1, and HSF binding protein 1 (HSBP1) (7).

$108
250 PCR reactions
500 µl
SimpleChIP® Human Tyrosinase Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the human tyrosinase promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. Tyrosinase is an oxidative enzyme that is involved in melanin synthesis that when mutated can cause albinism.
REACTIVITY
Human

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Retinoic Acid-Induced Gene 1 (RAIG1), also called RAI3 and GPRC5A, belongs to the family of G protein-coupled receptors (GPCRs). GPCRs are the largest and most abundant receptor family in mammals, composed of more than one thousand members (1). Retinoic acids (RA) are a group of pleiotropic signaling molecules that regulate a broad range of physiologic and developmental processes. It is thought that RAIG1 may be a downstream target of RA signaling (2). RAIG1 is expressed in lung tissue and in several lung cancer cell lines, and encodes a seven-transmembrane glycoprotein presumed to be a lung tumor suppressor gene (3,4).

$262
3 nmol
300 µl
SignalSilence® S100A4 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit S100A4 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation

Background: Cytochrome c is a well conserved electron-transport protein and is part of the respiratory chain localized to mitochondrial intermembrane space (1). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with procaspase-9 (47 kDa)/Apaf 1. This complex processes caspase-9 from inactive proenzyme to its active form (2). This event further triggers caspase-3 activation and eventually leads to apoptosis (3).

$262
3 nmol
300 µl
SignalSilence® Cyclin D1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit cyclin D1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Activity of the cyclin-dependent kinases CDK4 and CDK6 is regulated by T-loop phosphorylation, by the abundance of their cyclin partners (the D-type cyclins), and by association with CDK inhibitors of the Cip/Kip or INK family of proteins (1). The inactive ternary complex of cyclin D/CDK4 and p27 Kip1 requires extracellular mitogenic stimuli for the release and degradation of p27 concomitant with a rise in cyclin D levels to affect progression through the restriction point and Rb-dependent entry into S-phase (2). The active complex of cyclin D/CDK4 targets the retinoblastoma protein for phosphorylation, allowing the release of E2F transcription factors that activate G1/S-phase gene expression (3). Levels of cyclin D protein drop upon withdrawal of growth factors through downregulation of protein expression and phosphorylation-dependent degradation (4).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cytochrome c (D18C7) Rabbit mAb #11940.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cytochrome c is a well conserved electron-transport protein and is part of the respiratory chain localized to mitochondrial intermembrane space (1). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with procaspase-9 (47 kDa)/Apaf 1. This complex processes caspase-9 from inactive proenzyme to its active form (2). This event further triggers caspase-3 activation and eventually leads to apoptosis (3).

$336
100 µl
APPLICATIONS
REACTIVITY
Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$419
10 western blots
1 Kit
The Western Blotting Application Solutions Kit is designed to conveniently provide reagents needed for western blotting, from cell lysis to protein detection. The reagents in this kit are thoroughly validated with our primary antibodies and will work optimally with the CST western immunoblotting protocol, ensuring accurate and reproducible results. This kit includes sufficient reagents to run 10 mini-gels and complete western blot assays with either rabbit or mouse primary antibodies. All reagents in this kit are available individually.
APPLICATIONS

Application Methods: Western Blotting

$377
300 units
DyLight™ 650 Phalloidin allows researchers to fluorescently label the cytoskeleton of fixed cells through the binding of phalloidin to F-actin. This product is not intended for use on live cells due to the toxicity associated with phalloidin. After reconstitution the stock solution provides enough material to perform 300 assays based on a 1:20 dilution and a 100 μl assay volume.DyLight™ 650 Fluorescent Properties: Excitation: 651 nm, Emission: 672 nm.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Gelsolin (actin-depolymerizing factor, ADF, AGEL, Brevin) is an 83 kDa protein that shares structural and functional homology to villin and adseverin/scinderin (1,2). Gelsolin plays an important role in actin filament assembly by capping and severing actin proteins in a Ca2+-dependent manner (3,4). Gelsolin is important for cellular events (e.g., membrane ruffling, chemotaxis, ciliogenesis) that require cytoskeletal remodeling (3). Accordingly, cells from gelsolin knockout mice exhibit motility defects, including a failure to ruffle in response to growth factor stimulation (5,6). In humans, defects in gelsolin have been linked to amyloidosis type 5 (AMYL5), a hereditary disease characterized by cranial neuropathy, which appears to result from gelsolin amyloid deposition (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Erk5 (Mitogen-activated protein kinase 7, Big mitogen-activated protein kinase 1) is a member of the MAPK superfamily implicated in the regulation numerous cellular processes including proliferation, differentiation, and survival (1-4). Like other MAPK family members, Erk5 contains a canonical activation loop TEY motif (Thr218/Tyr220) that is specifically phosphorylated by MAP2K5 (MEK5) in a growth-factor-dependent, Ras-independent mechanism (5-7). For example, EGF stimulation promotes Erk5 phosphorylation that induces its translocation to the nucleus where it phosphorylates MEF2C and other transcriptional targets (5,6). Erk5 is also activated in response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic progenitor cells where it promotes survival and proliferation (7). In neuronal cells, Erk5 is required for NGF-induced neurite outgrowth, neuronal homeostasis, and survival (8,9). Erk5 is thought to play a role in blood vessel integrity via maintenance of endothelial cell migration and barrier function (10-12). Although broadly expressed, research studies have shown that mice lacking erk5 display numerous cardiac defects, suggesting Erk5 plays a critical role in vascular development and homeostasis (1,2).