Microsize antibodies for $99 | Learn More >>

Product listing: β-Arrestin 1 (D8O3J) Rabbit mAb, UniProt ID P49407 #12697 to SirT2 (D4O5O) Rabbit mAb, UniProt ID Q8IXJ6 #12650

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Arrestin proteins function as negative regulators of G protein-coupled receptor (GPCR) signaling. Cognate ligand binding stimulates GPCR phosphorylation, which is followed by binding of arrestin to the phosphorylated GPCR and the eventual internalization of the receptor and desensitization of GPCR signaling (1). Four distinct mammalian arrestin proteins are known. Arrestin 1 (also known as S-arrestin) and arrestin 4 (X-arrestin) are localized to retinal rods and cones, respectively. Arrestin 2 (also known as β-arrestin 1) and arrestin 3 (β-arrestin 2) are ubiquitously expressed and bind to most GPCRs (2). β-arrestins function as adaptor and scaffold proteins and play important roles in other processes, such as recruiting c-Src family proteins to GPCRs in Erk activation pathways (3,4). β-arrestins are also involved in some receptor tyrosine kinase signaling pathways (5-8). Additional evidence suggests that β-arrestins translocate to the nucleus and help regulate transcription by binding transcriptional cofactors (9,10).

$303
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix #8954.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Tyrosine phosphorylation plays a key role in cellular signaling (1). Research studies have shown that in cancer, unregulated tyrosine kinase activity can drive malignancy and tumor formation by generating inappropriate proliferation and survival signals (2). Antibodies specific for phospho-tyrosine (3,4) have been invaluable reagents in these studies. The phospho-tyrosine monoclonal antibodies developed by Cell Signaling Technology are exceptionally sensitive tools for studying tyrosine phosphorylation and monitoring tyrosine kinase activity in high throughput drug discovery.

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$499
120 slides
1 Kit
SignalStain® Apoptosis (Cleaved Caspase-3) IHC Detection Kit allows the detection of activated caspase-3 in formalin-fixed paraffin-embedded human and mouse tissue samples. Cleaved Caspase-3 (Asp175) (D3E9) Rabbit mAb is detected by the polymer based, HRP-conjugated SignalStain® Boost IHC Detection Reagent in combination with SignalStain® DAB Diluent and Chromogen Concentrate. Also included is a concentration-matched rabbit monoclonal IgG control to verify the specificity of staining.This combination of reagents provides a sensitive and specific means of detecting apoptotic events in tissue samples.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin)

Background: Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins, such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (1). Activation of caspase-3 requires proteolytic processing of its inactive zymogen into activated p17 and p12 fragments. Cleavage of caspase-3 requires the aspartic acid residue at the P1 position (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The x(c)(-) cysteine/glutamate antiporter consists of a light chain subunit (xCT/SLC7A11) that confers substrate specificity and a glycosylated heavy chain subunit (4F2hc/SLC3A2) located on the cell surface (1,2). The heterodimeric amino acid transport system x(c)(-) provides selective import of cysteine into cells in exchange for glutamate and regulating intracellular glutathione (GSH) levels, which is essential for cellular protection from oxidative stress (3). Research studies have shown that xCT expression increases in various tumors, including gliomas, and have implicated xCT in GSH-mediated anticancer drug resistance (4,5). Researchers have found that xCT provides neuroprotection by enhancing glutathione export from non-neuronal cells (6). Moreover, investigators identified xCT as the fusion-entry receptor for Kaposi's sarcoma-associated herpesvirus (7).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated His-Tag (D3I1O) XP® Rabbit mAb #12698.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated VEGF Receptor 2 (D5B1) Rabbit mAb #9698.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The actin-filament associated protein (AFAP) family consists of AFAP1, AFAP1L1, and AFAP1L2/XB130, a group of structurally similar proteins that play distinct roles in the regulation of cytoskeletal dynamics and signal transduction. Actin filament-associated protein 1-like 2 (AFAP1L2, XB130) is an adaptor protein that regulates signaling downstream of multiple kinases, including Src, Akt, and the thyroid specific kinase RET/PTC (1-3). Through these pathways, AFAP1L2/XB130 mediates transcriptional regulation, cell proliferation, motility, and microRNA expression (4,5). Research has shown that AFAP1L2/XB130 is involved in the proliferation and survival of thyroid tumor cells (6), and may have value in gastric cancer prognosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MDR1/ABCB1 belongs to the Mdr/Tap subfamily of the ATP-binding cassette transporter superfamily (1). Multidrug resistance 1 (MDR1) serves as an efflux pump for xenobiotic compounds with broad substrate specificity. MDR1 substrates include therapeutic agents such as actinomycin D, etoposide, imatinib, and doxorubicin, as well as endogenous molecules including β-amyloids, steroid hormones, lipids, phospholipids, cholesterol, and cytokines (2). Research studies have shown that MDR1 reduces drug accumulation in cancer cells, allowing the development of drug resistance (3-5). On the other hand, MDR1 expressed in the plasma membrane of cells in the blood-brain, blood-cerebral spinal fluid, or blood-placenta barriers restricts the permeability of drugs into these organs from the apical or serosal side (6,7). MDR1 is also expressed in normal tissues with excretory function such as small intestine, liver, and kidney (7). Intracellular MDR1 has been detected in the ER, vesicles, and nuclear envelope, and has been associated with cell trafficking machinery (8). Other reported functions of MDR1 include viral resistance, cytokine trafficking (9,10), and lipid homeostasis in the peripheral and central nervous system (11-13).

$262
3 nmol
300 µl
SignalSilence® γ-Catenin siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit γ-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis
REACTIVITY
Mouse

Background: Also known as plakoglobin, γ-catenin is a member of the Armadillo family of signaling molecules, which includes β-catenin and the Drosophila protein armadillo (1). This family of proteins is involved in Wnt signaling, which is important in embryonic development and in tumorigenesis (2-3). Although the two vertebrate proteins β- and γ-catenin display sequence homology, γ-catenin likely plays a role distinct from that of β-catenin (1, 4-6). γ-catenin localizes to desmosomes and adherens junctions, both sites of intercellular adhesion, and interacts with the cytoplasmic domains of classical and desmosomal cadherins. Interaction of γ- or β-catenin with α-catenin, desmoplakin and other junction proteins provides a link between intercellular junctions and the actin and intermediate filament cytoskeleton. Maintenance and/or modification of this link is vital for control of cell adhesion and migration (1). γ-catenin is modified by phosphorylation, affecting both adhesion and β-catenin dependent transcription (7), and by and O-glycosylation, affecting adhesion (8). Recent evidence suggests that γ-catenin regulates desmosomal adhesion in response to growth factor stimulation (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Eph receptors are the largest known family of receptor tyrosine kinases (RTKs). They can be divided into two groups based on sequence similarity and on their preference for a subset of ligands: EphA receptors bind to a glycosylphosphatidylinositol-anchored ephrin A ligand; EphB receptors bind to ephrin B proteins that have a transmembrane and cytoplasmic domain (1,2). Research studies have shown that Eph receptors and ligands may be involved in many diseases including cancer (3). Both ephrin A and B ligands have dual functions. As RTK ligands, ephrins stimulate the kinase activity of Eph receptors and activate signaling pathways in receptor-expressing cells. The ephrin extracellular domain is sufficient for this function as long as it is clustered (4). The second function of ephrins has been described as "reverse signaling", whereby the cytoplasmic domain becomes tyrosine phosphorylated, allowing interactions with other proteins that may activate signaling pathways in the ligand-expressing cells (5). Various stimuli can induce tyrosine phosphorylation of ephrin B, including binding to EphB receptors, activation of Src kinase, and stimulation by PDGF and FGF (6). Tyr324 and Tyr327 have been identified as major phosphorylation sites of ephrin B1 in vivo (7).

The Initiator Caspases Antibody Sampler Kit provides an economical means of evaluating initiator (apical) caspase proteins. The kit contains enough primary antibody to perform two western blots with each primary antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The cohesin complex consists of a heterodimer between SMC1 (SMC1A or B) and SMC3, bound by additional RAD21 and STAG proteins (STAG1, 2, or 3) (1,2). These proteins form a ring-like structure that mediates the cohesion of two sister chromatids after DNA replication in S phase (1,2). RAD21 and STAG2 are phosphorylated by Polo-like kinase (PLK) during prophase, which leads to the dissociation of cohesin complexes from the chromosome arms; however, cohesin remains bound to centromeres until anaphase (3,4). RAD21 is cleaved by separin/ESPL1 in anaphase, which leads to dissociation of the remaining cohesin from centromeres, enabling sister chromatids to segregate during mitosis (5). RAD21 is also cleaved by caspase-3 and caspase-7 during apoptosis, resulting in a 64 kDa carboxy-terminal cleavage product that translocates to the cytoplasm and may help to trigger apoptosis (6,7). In addition to mediating cohesion of sister chromatids, the cohesin complex plays important roles in gene regulation and DNA repair, as SMC1 and SMC3 are both phosphorylated by ATM and ATR kinases upon DNA damage (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as Class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT2, a mammalian homolog of Sir2, deacetylates α-tubulin at Lys40 and histone H4 at Lys16 and has been implicated in cytoskeletal regulation and progression through mitosis (2,3). SirT2 protein is mainly cytoplasmic and is associated with microtubules and HDAC6, another tubulin deacetylase (2). Deacetylation of α-tubulin decreases its stability and may be required for proper regulation of cell shape, intracellular transport, cell motility, and cell division (2,4). The abundance and phosphorylation state of SirT2 increase at the G2/M transition of the cell cycle, and SirT2 relocalizes to chromatin during mitosis when histone H4 Lys16 acetylation levels decrease (3,5). Overexpression of SirT2 prolongs mitosis, while overexpression of the CDC14B phosphatase results in both decreased phosphorylation and abundance of SirT2, allowing for proper mitotic exit (5). Thus, the deacetylation of both histone H4 and α-tubulin by SirT2 may be critical for proper chromatin and cytoskeletal dynamics required for completion of mitosis.

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Reptin/RuvBL2 and Pontin/RuvBL1 are closely related members of the AAA+ (ATPase associated with diverse cellular activities) superfamily of proteins, and are putatively homologous to bacterial RuvB proteins that drive branch migration of Holliday junctions (1). Reptin and Pontin function together as essential components of chromatin remodeling and modification complexes, such as INO80, TIP60, SRCAP, and Uri1, which play key roles in regulating gene transcription (1,2). In their capacity as essential transcriptional co-regulators, Reptin and Pontin have both been implicated in oncogenic transformations, including those driven by c-Myc, β-catenin, and E1A (2-7).

The Endosomal Marker Antibody Sampler Kit provides an economical means of distinguishing endosomes in the early, late, and recycling phases. The kit includes enough antibody to perform two western blot experiments with each primary antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Panthothenate kinase (PANK) is an enzyme that is responsible for catalyzing the first step in coenzyme A (CoA) synthesis (1-4). There are four human PANK genes (PANK1-4) (1-4). PANK4 is ubiquitously expressed, but higher expression levels are observed in muscle (1,2). PANK4 expression is elevated in rat skeletal muscle under high glucose conditions (2). There is evidence that rat PANK4 colocalizes with pyruvate kinase M2 (PKM2) in vitro (2). PANK4 may also play a protective role in beta-cell apoptosis by lowering the levels of pro-caspase-9 (3). Research studies have shown that mutations in the PANK2 gene are associated with Neurodegeneration with Brain Iron Accumulation (NBIA), formerly known as Hallervorden-Spatz syndrome (1,4). Expression of hPANK4 in a Drosophila model of NBIA rescues the phenotype with the exception of infertility (4).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CAD is essential for the de novo synthesis of pyrimidine nucleotides and possesses the following enzymatic activities: glutamine amidotransferase, carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase. Thus, the enzyme converts glutamine to uridine monophosphate, a common precursor of all pyrimidine bases, and it is necessary for nucleic acid synthesis (1). In resting cells, CAD is localized mainly in the cytoplasm where it carries out pyrimidine synthesis. As proliferating cells enter S phase, MAP Kinase (Erk1/2) phosphorlyates CAD at Thr456, resulting in CAD translocation to the nucleus. As cells exit S phase, CAD is dephosphorylated at Thr456 and phosphorylated at Ser1406 by PKA, returning the pathway to basal activity (2). Various research studies have shown increased expression of CAD in several types of cancer, prompting the development of pharmacological inhibitors such as PALA. Further studies have identified CAD as a potential predictive early marker of prostate cancer relapse (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The IL-17 family of cytokines consists of IL-17A-F, and their receptors include IL-17RA-RE (1). IL-17 cytokines are produced by a variety of cell types including the Th17 subset of CD4+ T cells, as well as subsets of γδ T cells, NK cells, and NKT cells (2). IL-17A and IL-17F, the most well-studied of the IL-17 cytokines, contribute to fungal and bacterial immunity by inducing expression of proinflammatory cytokines, chemokines, and antimicrobial peptides (2). In addition, IL-17A contributes to the pathogenesis of several autoimmune diseases (3). IL-17E promotes Th2 cell responses (4). The roles of IL-17B, IL-17C, and IL-17D are less clear, however these family members also appear to have the capacity to induce proinflammatory cytokines (1,5,6). IL-17 receptors have an extracellular domain, a transmembrane domain, and a SEFIR domain. They are believed to signal as homodimers, heterodimers, or multimers through their SEFIR domain by recruiting the SEFIR domain-containing adaptor Act1 (7). Unlike most cytokines that signal through Jak/STAT pathways, IL-17 signaling results in NF-κB activation (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Calcineurin binding protein CABIN1 was originally identified as an inhibitor of the calcium-dependent serine/threonine phosphatase, calcineurin. CABIN1 inhibits calcineurin signaling in T cells, regulating T cell receptor (TCR) signaling, transcription, and apoptosis (1-4). CABIN1 represses myocyte enhancer factor 2 (MEF2)-mediated transcription by recruiting chromatin remodeling enzymes (5), and also negatively regulates the activity of the tumor suppressor p53 (6). In response to genotoxic stress, CABIN1 is degraded and releases its inhibition of p53, allowing p53 to elicit cellular stress responses (7). CABIN1 is also involved in regulation of chromatin structure as part of the highly conserved HIRA/UBN1/CABIN1/ASF1A (HUCA) histone chaperone complex (8,9).

$260
100 µl
REACTIVITY
Human

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated VEGF Receptor 2 (D5B1) Rabbit mAb # 9698.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Plasminogen is the inactive, proenzyme precursor to the serine protease plasmin that degrades fibrin within blood clots, promotes cell migration through proteolytic degradation of extracellular matrix proteins, and regulates angiogenesis and wound healing through activation of matrix metalloproteases (1-4). Inactive plasminogen is produced and secreted by liver cells and is found in the circulatory system and extracellular fluids (1). The plasminogen protein is composed of an amino terminal preactivation peptide followed by five kringle domains and a serine proteinase domain (5). The plasminogen zymogen binds to sites on the cell surface and is subsequently cleaved to release the active serine proteinase plasmin. Identified plasminogen cell surface receptors (including S100A10, enolase and PLGRKT) share carboxy-terminal lysine residues that interact with plasminogen kringle domains, resulting in cell surface localization of plasminogen (6-8). Cleavage of plasminogen can be catalyzed by a number of distinct enzymes, including tissue specific plasminogen activator (tPA), urokinase plasminogen activator (uPA), and kallikrein (1). An additional plasminogen cleavage product is the angiogenesis inhibitor angiostatin, which is derived from the first four kringle domains (9). A number of related angiogenesis inhibitors, derived from various parts of the plasminogen kringle region, have been shown to inhibit endothelial cell growth and proliferation (10). Mutations in the corresponding PLG gene have been linked to plasminogen deficiencies, characterized by decreased plasmin expression and ligneous conjunctivitis in some individuals (11).

The Smad1/5/9 Antibody Sampler Kit provides an economical means of detecting target proteins of the BMP signaling pathway. The kit includes enough antibody to perform two western blots with each primary antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: mRNA export is a process that is tightly coupled to mRNA splicing (1-4). Splicing and packaging of mRNAs in the form of an mRNA-protein complex (mRNP) leads to the recruitment of the mRNA export adaptor THOC4/ALY, via its interaction with the splicing factor UAP56, forming a large complex termed the transcription-export complex (TREX) (1,2,5). THOC4/ALY then directly interacts with NXF1/TAP, a part of the heterodimer that targets the mRNP to the nuclear pore complex, resulting in the shuttling of mRNP out of the nucleus and into the cytoplasm (1-3,6).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunofluorescence (Frozen), Immunohistochemistry (Paraffin)

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).FoxP3 is crucial for the development of T cells with regulatory properties (Treg) (6). Mutations in FoxP3 are associated with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX) (7), while overexpression in mice causes severe immunodeficiency (8). Research studies have shown that FoxP3 functions as a tumor suppressor in several types of cancer (9-11).

The PDGF Receptor Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the PDGF receptor pathway, including SHP-2, Akt, and p44/42 MAPK (Erk1/2). The kit includes enough antibody to perform two western blot experiments per primary antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as Class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT2, a mammalian homolog of Sir2, deacetylates α-tubulin at Lys40 and histone H4 at Lys16 and has been implicated in cytoskeletal regulation and progression through mitosis (2,3). SirT2 protein is mainly cytoplasmic and is associated with microtubules and HDAC6, another tubulin deacetylase (2). Deacetylation of α-tubulin decreases its stability and may be required for proper regulation of cell shape, intracellular transport, cell motility, and cell division (2,4). The abundance and phosphorylation state of SirT2 increase at the G2/M transition of the cell cycle, and SirT2 relocalizes to chromatin during mitosis when histone H4 Lys16 acetylation levels decrease (3,5). Overexpression of SirT2 prolongs mitosis, while overexpression of the CDC14B phosphatase results in both decreased phosphorylation and abundance of SirT2, allowing for proper mitotic exit (5). Thus, the deacetylation of both histone H4 and α-tubulin by SirT2 may be critical for proper chromatin and cytoskeletal dynamics required for completion of mitosis.