Interested in promotions? | Click here >>

Product listing: Ammonium Bicarbonate, 1M in HPLC-Grade Water #78450 to xCT/SLC7A11 Antibody, UniProt ID Q9WTR6 #98051

Ammonium bicarbonate buffer is supplied as a one molar (1M) concentrated stock in HPLC grade water. This buffer is recommended for use in PTMScan protocols for LC-MS applications during the digestion procedures.
$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-IRF-3 (Ser386) (E7J8G) XP® Rabbit mAb #37829.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated TNFRSF8/CD30 (E7E4D) XP® Rabbit mAb #25114.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: TNFRSF8/CD30 is a type-I transmembrane glycoprotein that is a member of the TNFR superfamily. CD30 is synthesized as a precursor protein that undergoes extensive posttranslational modification before becoming embedded in the plasma membrane as a 120-kDa transmembrane protein (1,2). The expression of CD30 is upregulated in activated T-cells and may trigger costimulatory signaling pathways upon its engagement (3,4). While its expression is normally restricted to subsets of activated T-cells and B-cells, CD30 expression is robustly upregulated in hematologic malignancies, such as Hodgkin’s lymphoma (HL), anaplastic large cell lymphoma (ALCL), and adult T-cell leukemia, thus making it an attractive target for therapeutic intervention (5,6). Research studies have suggested that in certain disease contexts, CD30 recruits TRAF2 and TRAF5 adaptor proteins to drive NF-kappa B activation, aberrant cell growth, and cytokine production (7-9). CD30 signaling is also regulated by TACE-dependent proteolytic cleavage of its ectodomain, which results in reduced CD30L-dependent activation of CD30+ cells (10, 11).

$42
50 ml
FastScan™ ELISA Cell Extraction Buffer (5X) is used with FastScan™ ELISA Cell Extraction Enhancer Solution (50X) #25243 (not supplied) to prepare and dilute cell extracts for use in FastScan™ ELISA Kits.
$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated 4F2hc/CD98 (D3F9D) XP® Rabbit mAb #47213.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: 4F2hc is a transmembrane protein that belongs to the solute carrier family. 4F2hc forms heterodimeric complexes with various amino acid transporters such as LAT1 and LAT2 and regulates uptake of amino acids (1-5). 4F2hc is one of the earliest expressed antigens on the surface of activated human lymphocytes (6), hence it is also named CD98. 4F2hc is expressed in all cell types with the exception of platelets, and is expressed at highest levels in the tubules of the kidney and the gastrointestinal tract (7,8). It is localized at the plasma membrane when associated with LAT1 or LAT2 (9) and at the apical membrane of placenta (10). Research studies have shown that 4F2hc is highly expressed in various tumors including glioma (11), ovarian cancer (12), and astrocytomas (13), and it has been implicated in tumor progression and correlated with poor outcome in patients with pulmonary neuroendocrine tumors (14). 4F2hc is also involved in integrin trafficking through association with β1 and β4 integrins, and regulates keratinocyte adhesion and differentiation (15).

Urea is an organic compound that is highly soluble in water with strong protein denaturing properties. These properties make it ideal for use in preparation of Urea Lysis buffer for preparing cell and tissue extracts prior to PTMScan®-based applications. Urea, Ultrapure, PTMScan® Qualified from Cell Signaling Technology is offered in a convenient 54.05g size that allows for the preparation of 100ml of Urea Lysis Buffer with a final formulation of 20mM HEPES, 9M urea, and 1X Phosphatase Inhibitor Cocktail when following the Directions for Use.
$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CHOP (L63F7) Mouse mAb #2895.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: CHOP was identified as a C/EBP-homologous protein that inhibits C/EBP and LAP in a dominant-negative manner (1). CHOP expression is induced by certain cellular stresses including starvation and the induced CHOP suppresses cell cycle progression from G1 to S phase (2). Later it was shown that, during ER stress, the level of CHOP expression is elevated and CHOP functions to mediate programmed cell death (3). Studies also found that CHOP mediates the activation of GADD34 and Ero1-Lα expression during ER stress. GADD34 in turn dephosphorylates phospho-Ser51 of eIF2α thereby stimulating protein synthesis. Ero1-Lα promotes oxidative stress inside the endoplasmic reticulum (ER) (4). The role of CHOP in the programmed cell death of ER-stressed cells is correlated with its role promoting protein synthesis and oxidative stress inside the ER (4).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated FcγRIIB (D8F9C) XP® Rabbit mAb (Mouse Specific) #96397.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: FcγRIIB (CD32B) is a low affinity, IgG Fc-binding receptor expressed on B cells, monocytes, macrophages, and dendritic cells (DCs) (1-3). It is the inhibitory Fc receptor and signals through an immunoreceptor tyrosine-based inhibitory motif (ITIM) within its carboxy-terminal cytoplasmic tail (2). Binding of immune complexes to FcγRIIB results in tyrosine phosphorylation of the ITIM motif at Tyr292 and recruitment of the phosphatase SHIP, which mediates inhibitory effects on immune cell activation (2,4). In this way, FcγRIIB suppresses the effects of activating Fc-binding receptors (3). For example, mice deficient for FcγRIIB have greater T cell and DC responses following injection of immune complexes (5, 6). In addition, FcγRIIB plays a role in B cell affinity maturation (7). Signaling through FcγRIIB in the absence of signaling through the B cell receptor (BCR) is proapoptotic, while signaling through FcγRIIB and the BCR simultaneously attenuates the apoptotic signal and results in selection of B cells with higher antigen affinity (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser109, Ser127) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).

$45
96 tests
The FastScan™ ELISA Microwell Strip Plate, 96 Well is a clear polystyrene plate that is coated with a proprietary antibody for use with colorimetric FastScan™ ELISA kits.Each 96-well plate is composed of 12 x 8-well strips/modules. Either the entire plate can be used at one time for an experiment, or it can be subdivided to use only the necessary number of 8-well strips.
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: HERV-H LTR-associating protein 2 (HHLA2, with alternative names of B7-H5 and B7-H7) is a member of the B7 immunoglobulin superfamily (1). HHLA2 protein is constitutively expressed on the surface of human monocytes and is induced on B cells after stimulation with LPS and IFN-γ (1,2). Through interaction with TMIGD2, which is constitutively expressed on all naïve T cells and the majority of natural killer cells, but not on T regulatory cells or B cells, HHLA2 co-stimulates T cells in the context of TCR-mediated activation, enhancing T cell proliferation and cytokine production via an AKT-dependent signaling cascade (2). Contrary to this, HHLA2 has also been shown to inhibit T cell proliferation and cytokine production, suggesting a secondary receptor for HHLA2 that is expressed on activated T cells with co-inhibitory functions (3). Moreover, HHLA2 has been shown to be highly expressed in various types of cancer, and is associated with a poor prognosis (4-10). Further understanding the immunologic functions of the HHLA2 pathway will guide the selection of agents used for cancer immunotherapy, autoimmune disorders, infection, and transplant rejection.

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Gasdermin D (GSDMD), a member of the gasdermin family that includes GSDMA, GSDMB, and GSMDC, has been reported to have a critical role as a downstream effector of pyroptosis (1,2). Pyroptosis is a lytic type of cell death triggered by inflammasomes, multiprotein complexes assembled in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) that result in the activation of caspase-1 and subsequent cleavage of pro-inflammatory cytokines IL-1β and IL-18 (3). Gasdermin D was identified by two independent groups as a substrate of inflammatory caspases, caspase-1 and caspase-11/4/5, producing two fragments: GSDMD-N and GSDMD-C. Cleavage results in release of an intramolecular inhibitory interaction between the N- and C-terminal domains, allowing the N-terminal fragment GSMDM-N to initiate pyroptosis through the formation of pores on the plasma membrane (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Following protein synthesis, secretory, intra-organellar, and transmembrane proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. The accumulation of unfolded proteins within the ER triggers an adaptive mechanism known as the unfolded protein response (UPR) that counteracts compromised protein folding (1). The transmembrane serine/threonine kinase IRE1, originally identified in Saccharomyces cerevisiae, is a proximal sensor for the UPR that transmits the unfolded protein signal across the ER membrane (2-4). The human homolog IRE1α was later identified and is ubiquitously expressed in human tissues (5). Upon activation of the unfolded protein response, IRE1α splices X-box binding protein 1 (XBP-1) mRNA through an unconventional mechanism using its endoribonuclease activity (6). This reaction converts XBP-1 from an unspliced XBP-1u isoform to the spliced XBP-1s isoform, which is a potent transcriptional activator that induces expression of many UPR responsive genes (6).

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) is a commonly used biological buffer due to superior physiological pH stability over a range of temperatures and conditions.
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are essential amino acids in mammals, but elevated levels of BCAAs have been implicated in cardiovascular and metabolic disorders (1). The branched-chain α-keto acid dehydrogenase complex (BCKDH) catalyzes the rate-limiting step in the BCAA degradation pathway (2, 3). Branched-chain α-keto acid decarboxylase (BCKDH-E1) is one of three enzymatic components in this complex (3). The α subunit of BCKDH-E1 (BCKDH-E1α) is critical for the regulation of BCKDH. Phosphorylation of BCKDH-E1α was shown to play a key role in regulating the enzymatic activity of this complex (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The E2F family consists of 8 transcription factors that regulate genes that control cell cycle progression by complexing with DP and Rb proteins (1-4). E2F transcriptional activation is generally opposed by associating with RB proteins, pRB, p107, and p130 (5-7). E2F-1, -2, and -3a function as activators that can help quiescent cells enter S phase, while E2F-3b, -4, and -5 repress cell growth through the recruitment of HDAC’s and other corepressors to target genes (8-10). E2F-6 diverges considerably from other family members, and has repressive properties governed not through interaction with Rb proteins, but by recruiting the polycomb repressive complex (11,12). E2F-7, and -8 are unique in that they have two DNA-binding domains and do not heterodimerize with DP proteins. These E2F family members repress transcription and delay progression of the cell cycle through the regulation of E2F-1 (13-15)

Lysl-endopeptidase (Lys-C) hydrolyzes amide and peptide ester bonds on the carboxyl side of lysine residues and hydrolyzes S-aminoethylcysteine residues.
Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides an economical means of detecting multiple components of the SASP. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Senescence is characterized by stable stress-induced proliferative arrest and resistance to mitogenic stimuli, as well as the secretion of proteins such as cytokines, growth factors and proteases. These secreted proteins comprise the senescence-associated secretory phenotype (SASP). Senescent cells are thought to accumulate as an organism ages, and contribute to age-related diseases, including cancer, through promotion of inflammation and disruption of normal cellular function (1,2). The composition of the SASP varies, and SASP components can be either beneficial or deleterious in human disease, depending on the context (3).Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides a collection of antibodies to various SASP components, including TNF-alpha, interleukin-6 (IL-6), the multifunctional cytokine IL-1beta, the chemokines CXCL10, RANTES/CCL5 and MCP-1, the matrix metalloprotease MMP3, and the serine-protease inhibitor PAI-1.

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transcription factor EB (TFEB) is a member of the Myc-related, bHLH leucine-zipper family of transcription factors that drives the expression of a network of genes known as the Coordinated Lysosomal Expression and Regulation (CLEAR) network (1,2). TFEB specifically recognizes and binds regulatory sequences within the CLEAR box (GTCACGTGAC) of lysosomal and autophagy genes, resulting in the up-regulated expression of genes involved in lysosome biogenesis and function, and regulation of autophagy (1,2). TFEB is activated in response to nutrient deprivation, stimulating translocation to the nucleus where it forms homo- or heterooligomers with other members of the microphthalmia transcription factor (MiTF) subfamily and resulting in up-regulation of autophagosomes and lysosomes (3-5). Recently, it has been shown that TFEB is a component of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which regulates the phosphorylation and nuclear translocation of TFEB in response to cellular starvation and stress (6-9). During normal growth conditions, TFEB is phosphorylated at Ser211 in an mTORC1-dependent manner. Phosphorylation promotes association of TFEB with 14-3-3 family proteins and retention in the cytosol. Inhibition of mTORC1 results in a loss of TFEB phosphorylation, dissociation of the TFEB/14-3-3 complex, and rapid transport of TFEB to the nucleus where it increases transcription of CLEAR and autophagy genes (10). TFEB has also been shown to be activated in a nutrient-dependent manner by p42 MAP kinase (Erk2). TFEB is phosphorylated at Ser142 by Erk2 in response to nutrient deprivation, resulting in nuclear localization and activation, and indicating that pathways other than mTOR contribute to nutrient sensing via TFEB (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Following protein synthesis, secretory, intra-organellar, and transmembrane proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. The accumulation of unfolded proteins within the ER triggers an adaptive mechanism known as the unfolded protein response (UPR) that counteracts compromised protein folding (1). The transmembrane serine/threonine kinase IRE1, originally identified in Saccharomyces cerevisiae, is a proximal sensor for the UPR that transmits the unfolded protein signal across the ER membrane (2-4). The human homolog IRE1α was later identified and is ubiquitously expressed in human tissues (5). Upon activation of the unfolded protein response, IRE1α splices X-box binding protein 1 (XBP-1) mRNA through an unconventional mechanism using its endoribonuclease activity (6). This reaction converts XBP-1 from an unspliced XBP-1u isoform to the spliced XBP-1s isoform, which is a potent transcriptional activator that induces expression of many UPR responsive genes (6).

$21
5 ml
FastScan™ ELISA Cell Extraction Enhancer Solution (50X) is used with FastScan™ ELISA Cell Extraction Buffer (5X) #69905 (not supplied) to prepare and dilute cell extracts for use in FastScan™ ELISA Kits.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Pitrilysin metalloproteinase 1 (PITRM1 or PreP) is a mitochondria-enriched presequence peptidase that processes the mitochondrial targeting sequence (MTS) of proteins imported across the inner mitochondrial membrane (1). Mitochondria normally function to regulate many cellular processes such as energy production and apoptosis, and its dysfunction may contribute indirectly or directly to human neurodegenerative diseases like Alzheimer’s and Parkinson’s disease (2, 3; AD and PD, respectively). Interestingly, Aβ, the pathological hallmark of AD, accumulates in mitochondria and inhibits Cym1, the PITRM1 yeast ortholog, leading to impaired MTS processing and accumulation of unprocessed mitochondrial proteins, suggesting an indirect role of Aβ and mitochondrial dysfunction via PITRM1 (4). In addition to biochemical association of PITRM1 with Aβ-dependent mitochondrial dysfunction, human genetics suggest a more direct link as PITRM1 genetic variants have been associated with AD (5, 6). The specific mechanism is currently poorly understood, but may involve impairment of PITRM1-dependent degradation of Aβ, directly resulting in pathological accumulation of Aβ in mitochondria (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: T-cell immunoreceptor with Ig and ITIM domains (TIGIT), also known as VSIG9, VSTM3, and WUCAM, is a member of the poliovirus receptor family of immunoglobulin proteins (1-3). TIGIT is expressed at low levels on subsets of T cells and NK cells, and is upregulated at the protein level following activation of these cells (1-4). TIGIT marks exhausted T cells in the tumor microenvironment (5) and during human immunodeficiency virus (HIV) infection (6). Research has shown TIGIT interacts with several receptors expressed on antigen presenting cells, such as dendritic cells and macrophages, as well as tumor cells and cells of the microenvironment. TIGIT binds with high affinity to PVR/CD155, and with low affinity to Nectin-2/CD112 and Nectin-3/CD113 (2,4,7). Upon binding to its ligands, TIGIT suppresses T cell activation, and inhibits T and NK cell cytotoxicity. This inhibition can be blocked using monoclonal antibodies directed at the ITIM domain of TIGIT, resulting in rejuvenated antigen-specific CD8+ T cell responses in tumors and during HIV infection (5,6,8). Three potential isoforms of TIGIT have been computationally mapped (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD64 (FcgammaRI), CD32 (FcgammaRII) and CD16 (FcgammaRIII) are three classes of the immunoglobulin superfamily. CD64 has a high affinity for IgG with three Ig-like domains while CD32 and CD16 have low affinities with two Ig-like domains. Two genes encode CD16-A and CD16-B resulting only in a 6 amino acid difference in their ectodomains. However, CD16-A has a transmembrane anchor versus CD16-B, which has a glycosylphosphatidylinositol (1). CD64, CD32 and CD16 are membrane glycoproteins that are expressed by all immunologically active cells and trigger various immune functions (activate B cells, phagocytosis, antibody-dependent cellular cytotoxicity, immune complex clearance and enhancement of antigen presentation) (2). CD16 cross-linking induces tyrosine phosphorylation (Tyr394) of Lck in NK cells (3). CD32 has tyrosine-based activation motifs in the cytoplasmic domain in contrast to CD16, which associates with molecules possessing these motifs (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Alix, a phylogenetically conserved cytosolic scaffold protein, contains an N-terminal Bro1 domain, a coiled-coil region and a C-terminal proline-rich domain (1,2). Originally identified as an ALG-2 (apoptosis-linked gene 2)-interacting protein involved in programmed cell death (3,4), Alix also regulates many other cellular processes, such as endocytic membrane trafficking and cell adhesion through interactions with ESCRT (endosomal sorting complex required for transport) proteins, endophilins, and CIN85 (Cbl-interacting protein of 85 kDa) (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CKLF-like MARVEL transmembrane domain-containing protein 4 (CMTM4) is a member of the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (1). CMTM4 acts as a tumor suppressor in various malignancies, and regulates cell growth and transition through the cell cycle in HeLa cells (1-4). CMTM4 plays an important role in angiogenesis, enabling internalization of membrane-bound vascular endothelial cadherin at adherens junctions, mediating endothelial barrier function, and controlling vascular sprouting (5). In the immune system, CMTM4 acts as a backup for CMTM6 to regulate plasma membrane expression of PD-L1, an immune inhibitory ligand critical for immune tolerance to self and anti-tumor immunity (6-8). CMTM4 may also protect PD-L1 from being polyubiquitinated and targeted for degradation (8). Due to the roles of CMTM4 in the immune system and as a tumor suppressor, it is being investigated as a therapeutic target for the treatment of cancer.

$179
100 tests
1 Kit
The Intracellular Flow Cytometry Kit provides the supporting reagents needed to preserve protein states and enable antibodies to bind intracellular targets, for flow cytometric analysis of cells in suspension. This kit contains sufficient reagents for 100 individual samples when following the included protocol.IMPORTANT: Please refer to the antibody product page to determine if it is validated for use in Flow Cytometry (F) and for information regarding appropriate antibody dilution. Some primary antibodies may require detergent permeabilization, which will be noted on the datasheet. Detergent is not included in this kit.
APPLICATIONS

Application Methods: Flow Cytometry

$63
125 ml
ELISA Wash Buffer (20X) is specifically formulated for use with both FastScan™ and PathScan® ELISA Kits. It is the recommended buffer to be used for all wash steps within the protocols for both kits.
$199
100 µg
This Cell Signaling Technology antibody is conjugated to redFluor™ 710 and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: The x(c)(-) cysteine/glutamate antiporter consists of a light chain subunit (xCT/SLC7A11) that confers substrate specificity and a glycosylated heavy chain subunit (4F2hc/SLC3A2) located on the cell surface (1,2). The heterodimeric amino acid transport system x(c)(-) provides selective import of cysteine into cells in exchange for glutamate and regulating intracellular glutathione (GSH) levels, which is essential for cellular protection from oxidative stress (3). Research studies have shown that xCT expression increases in various tumors, including gliomas, and have implicated xCT in GSH-mediated anticancer drug resistance (4,5). Researchers have found that xCT provides neuroprotection by enhancing glutathione export from non-neuronal cells (6). Moreover, investigators identified xCT as the fusion-entry receptor for Kaposi's sarcoma-associated herpesvirus (7).