Microsize antibodies for $99 | Learn More >>

Product listing: TNF-α (D2D4) XP® Rabbit mAb (Mouse Specific), UniProt ID P06804 #11948 to Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb (Alexa Fluor® 647 Conjugate), UniProt ID P04792 #11892

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TNF-α, the prototypical member of the TNF protein superfamily, is a homotrimeric type-II membrane protein (1,2). Membrane-bound TNF-α is cleaved by the metalloprotease TACE/ADAM17 to generate a soluble homotrimer (2). Both membrane and soluble forms of TNF-α are biologically active. TNF-α is produced by a variety of immune cells including T cells, B cells, NK cells, and macrophages (1). Cellular response to TNF-α is mediated through interaction with receptors TNF-R1 and TNF-R2 and results in activation of pathways that favor both cell survival and apoptosis depending on the cell type and biological context. Activation of kinase pathways (including JNK, Erk1/2, p38 MAPK, and NF-κB) promotes the survival of cells, while TNF-α-mediated activation of caspase-8 leads to programmed cell death (1,2). TNF-α plays a key regulatory role in inflammation and host defense against bacterial infection, notably Mycobacterium tuberculosis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CaMKII is an important member of the calcium/calmodulin-activated protein kinase family, functioning in neural synaptic stimulation and T cell receptor signaling (1,2). CaMKII has catalytic and regulatory domains. Ca2+/calmodulin binding to the CaMKII regulatory domain relieves autoinhibition and activates the kinase (3). The activated CaMKII further autophosphorylates at Thr286 to render the kinase constitutively active (3). The threonine phosphorylation state of CaMKII can be regulated through PP1/PKA. PP1 (protein phosphatase 1) dephosphorylates phospho-CaMKII at Thr286. PKA (protein kinase A) prevents phospho-CaMKII (Thr286) dephosphorylation through an inhibitory effect on PP1 (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Orthodenticle homeobox 2 (OTX2) belongs to the bicoid subfamily of paired-box, homeodomain-containing transcription factors. OTX2 is a critically important neuronal transcription factor that functions to regulate the expression of cell cycle genes controlling proliferation and differentiation of neural progenitor cells (1-3). In addition to its neuronal development functions, it has been reported that OTX2 can function in a non-cell autonomous manner to promote survival of damaged retinal ganglion cells (4). OTX2 has also been shown to influence the susceptibility of post-mitotic neurons to toxic insult or physiological stress (3). Notably, aberrant expression of OTX2 has been strongly linked with neuronal tumor development. For example, research studies have found OTX2 is overexpressed in many medulloblastoma cell lines, and both overexpression and gene amplification were reported in a subset of primary medulloblastomas (5). In vitro studies support these observations, as targeted alterations in OTX2 expression directly affected both proliferation and senescence of medulloblastoma cell lines (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Cytochrome c is a well conserved electron-transport protein and is part of the respiratory chain localized to mitochondrial intermembrane space (1). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with procaspase-9 (47 kDa)/Apaf 1. This complex processes caspase-9 from inactive proenzyme to its active form (2). This event further triggers caspase-3 activation and eventually leads to apoptosis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Oligophrenin-1 is a RhoGTPase-activating protein encoded by the gene OPHN1 (1). Oligophrenin-1 is composed of an N-terminal BAR domain, a pleckstrin homology domain, a central RhoGAP domain, and three putative C-terminal SH3-binding sites. Oligophrenin-1 plays a role in membrane signaling through interaction of its BAR domain with curved membranes, binding of its pleckstrin homology domain with membrane phosphoinositides, and interaction of the SH3-binding sites with adaptor proteins (1-3). Oligophrenin-1 regulates synaptic vesicle endocytosis (3) and plays an important role in dendritic spine morphogenesis (4). Furthermore, by interacting with the transcription factor Rev-erbα and protecting it from degradation, Oligophrenin-1 participates in the regulation of the circadian rhythm in the hippocampus (5). Research studies have demonstrated an involvement of Oligophrenin-1 in X-linked mental retardation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CAD is essential for the de novo synthesis of pyrimidine nucleotides and possesses the following enzymatic activities: glutamine amidotransferase, carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase. Thus, the enzyme converts glutamine to uridine monophosphate, a common precursor of all pyrimidine bases, and it is necessary for nucleic acid synthesis (1). In resting cells, CAD is localized mainly in the cytoplasm where it carries out pyrimidine synthesis. As proliferating cells enter S phase, MAP Kinase (Erk1/2) phosphorlyates CAD at Thr456, resulting in CAD translocation to the nucleus. As cells exit S phase, CAD is dephosphorylated at Thr456 and phosphorylated at Ser1406 by PKA, returning the pathway to basal activity (2). Various research studies have shown increased expression of CAD in several types of cancer, prompting the development of pharmacological inhibitors such as PALA. Further studies have identified CAD as a potential predictive early marker of prostate cancer relapse (3).

$114
10 ml
Alexa Fluor® and many other anionic fluorescent dyes and proteins can bind nonspecifically with cationic cell and tissue constituents. By efficiently blocking these nonspecific electrostatic interactions, Image-iT® FX Signal Enhancer can dramatically improve the signal-to-noise ratio of immunolabeled cells and tissues. Image-iT® is a liquid that is applied directly to slides or coverslips containing fixed and permeabilized cell or tissue samples prior to staining with fluorescent probes.
APPLICATIONS

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunofluorescence (Paraffin)

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitinating enzymes (UBEs) catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action (1,2). Five DUB subfamilies are recognized, including the USP, UCH, OTU, MJD, and JAMM enzymes. In humans, there are three proteasomal DUBs: PSMD14 (POH1/RPN11), UCH37 (UCH-L5), and Ubiquitin-Specific Protease 14, which is also known as the 60 kDa subunit of tRNA-guanine transglycosylase (USP14/TGT60 kDa). USP14 is recruited to the proteasome through its reversible association with the PSMD2 (S2/hRPN1) subunit of the 19S regulatory particle. Whereas PSMD14 appears to promote substrate degradation (3,4), USP14 is thought to antagonize substrate degradation (5-8). While the underlying mechanism for the opposing roles of these two proteasomal DUBs is still uncertain, it is thought that USP14 removes ubiquitin from substrate upon docking of the substrate with the 26S proteasome. Furthermore, USP14 trims ubiquitin residues from the distal end of the polyubiquitin chain, thus decreasing the affinity of the chain for the ubiquitin receptors of the proteasome, and allowing for enhanced substrate stability (6,9,10). Studies have elucidated a physiologic role for USP14 in regulating synaptic activity in mammals (11). Research studies have shown that targeting this activity with small molecule inhibitors has potential benefits for the treatment of neurodegenerative diseases and cancer (5,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state, complexed with the inhibitory IκB proteins (1-3). Most agents that activate NF-κB do so through a common pathway based on phosphorylation-induced, proteasome-mediated degradation of IκB (3-7). The key regulatory step in this pathway involves activation of a high molecular weight IκB kinase (IKK) complex whose catalysis is generally carried out by three tightly associated IKK subunits. IKKα and IKKβ serve as the catalytic subunits of the kinase and IKKγ serves as the regulatory subunit (8,9). Activation of IKK depends upon phosphorylation at Ser177 and Ser181 in the activation loop of IKKβ (Ser176 and Ser180 in IKKα), which causes conformational changes, resulting in kinase activation (10-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SENP1 is a member of the sentrin/SUMO-specific protease (SENP) family. SENP1 localizes to the nucleoplasm and catalyzes the release of SUMO1, SUMO2, and SUMO3 monomers from sumoylated substrates (1,2). SENP1 has been reported to be responsible for intracellular SUMO homeostasis in the control of normal cellular function (2). The removal of sumoylation by SENP1 from many important target proteins, such as HDAC1, HIF-1α, Stat5, p300, Elk-1, and SirT1, leads to the regulation of the related biological pathways (3-8). SENP1-induced desumoylation of HIF-1α stabilizes the target during hypoxia (5), activating downstream VEGF expression and angiogenesis (9). SENP1 desumoylates Stat5 and contributes to Stat5 acetylation and subsequent signaling during normal lymphocyte development (6). Under stress conditions, SENP1 interacts with and inactivates SirT1 by desumoylation, protecting cells from apoptosis (8). SENP1 has been reported to target the progesterone and androgen receptors, either directly or indirectly through HDAC1, thereby upregulating their transcriptional function and potentially affecting receptor-related cancer progression (3,10-13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Interleukin-1 (IL-1) receptor-associated kinase (IRAK) is a serine/threonine-specific kinase that can be coprecipitated in an IL-1-inducible manner with the IL-1 receptor (1). The mammalian family of IRAK molecules contains four members (IRAK1, IRAK2, IRAK3/IRAK-M, and IRAK4). The binding of IL-1 to IL-1 receptor type I (IL-1RI) initiates the formation of a complex that includes IL-1RI, AcP, MyD88, and IRAKs (2). IRAK undergoes autophosphorylation shortly after IL-1 stimulation. The subsequent events involve IRAK dissociation from the IL-1RI complex, its ubiquitination, and its association with two membrane-bound proteins: TAB2 and TRAF6. The resulting IRAK-TRAF6-TAB2 complex is then released into the cytoplasm where it activates protein kinase cascades, including TAK1, IKKs, and the stress-activated kinases (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Mitofusins are mitochondrial transmembrane GTPases that function to regulate mitochondrial fusion, a process that occurs in concert with mitochondrial division and is necessary for the maintenance of structural and genetic mitochondrial integrity (1,2). Two mitofusins have been described in mammals, mitofusin-1 and -2, which share 60% amino acid identity and appear to function coordinately to regulate mitochondrial fusion (3). Mitochondrial fusion is widely recognized as important for normal cell growth and development (4), and may have evolved as a mechanism to offset the deleterious effects of mtDNA mutations (3). Null mutations in either mitofusin are embryonic lethal in mice, whereas conditional knockout studies have shown that combined deletion of mitofusin-1 and mitofusin-2 in skeletal muscle results in severe mitochondrial dysfunction (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: RING-box protein 1 (RBX1 or ROC1) is an essential component of two distinct but structurally related E3 ubiquitin ligase complexes, the SCF complex and the CBC (VHL) complex (1). RBX1 mediates the neddylation of CUL1, which activates SCF E3 ligase by facilitating the ubiquitin transfer from E2 to substrates (2-4). The RING finger domain of RBX1 is required for ubiquitin ligation (5). Two evolutionarily conserved mammalian RBX family members, RBX1/ROC1 and RBX2/ROC2/SAG, have been identified (5). RBX1 is constitutively expressed and binds to CUL2/VHL, while stress-inducible RBX2 binds to CUL5/SOCS (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The DYRK family includes several dual-specificity tyrosine-phosphorylated and regulated kinases capable of phosphorylating proteins at both Tyr and Ser/Thr residues (1). The DYRK family was identified based on homology to the yeast Yak1 (2) and the Drosophila minibrain (mnb) kinases (3). Seven mammalian isoforms have been discovered, including DYRK1A, DYRK1B, DYRK1C, DYRK2, DYRK3, DYRK4, and DYRK4B. Differences in substrate specificity, expression, and subcellular localization are seen across the DYRK family (4,5). All DYRK proteins have a Tyr-X-Tyr motif in the catalytic domain activation loop; phosphorylation of the second Tyr residue (e.g. Tyr312 of DYRK1A) is necessary for kinase activity. DYRKs typically autophosphorylate the Tyr residue within their activation loop, but phosphorylate substrates at Ser and Thr residues (1,6).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Rb (Ser807/811) (D20B12) XP® Rabbit mAb #8516.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The retinoblastoma tumor suppressor protein Rb regulates cell proliferation by controlling progression through the restriction point within the G1-phase of the cell cycle (1). Rb has three functionally distinct binding domains and interacts with critical regulatory proteins including the E2F family of transcription factors, c-Abl tyrosine kinase, and proteins with a conserved LXCXE motif (2-4). Cell cycle-dependent phosphorylation by a CDK inhibits Rb target binding and allows cell cycle progression (5). Rb inactivation and subsequent cell cycle progression likely requires an initial phosphorylation by cyclin D-CDK4/6 followed by cyclin E-CDK2 phosphorylation (6). Specificity of different CDK/cyclin complexes has been observed in vitro (6-8) and cyclin D1 is required for Ser780 phosphorylation in vivo (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Mitotic control is important for normal growth, development, and maintenance of all eukaryotic cells. Research studies have demonstrated that inappropriate control of mitosis can lead to genomic instability and cancer (reviewed in 1,2). A regulator of mitosis, Greatwall kinase (Gwl), was first identified in Drosophila melanogaster (3). Subsequent studies showed that, based on sequence homology and function, microtubule-associated serine/threonine kinase-like (MASTL) is the human ortholog of Gwl (4). Regulation of MASTL/Gwl activation has been shown to be critical for the correct timing of mitosis. Research studies have shown that Gwl is activated by hyperphosphorylation (5). The phosphorylation of human Gwl at Thr194 and Thr207 by active cyclin B1-cdc2 leads to possible autophosphorylation at Ser875 (Ser883 in Xenopus), which stabilizes the kinase. Activated Gwl phosphorylates α-Endosulfine (ENSA) and cAMP-regulated phosphoprotein 19 (ARPP19) at Ser67 and Ser62, respectively. Phosphorylated ENSA and ARPP19 inhibit the activity of the B55 subunit-associated form of protein phosphatase 2A (PP2A-B55), allowing for complete phosphorylation of mitotic substrates by cyclin B1-cdc2 and mitotic entry. When Gwl is inactivated, PP2A-B55 reactivates, which leads to dephosphorylation of cyclin B1-cdc2 and mitotic exit (5,6, reviewed in 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The proprotein convertases (PCs) are enzymes that activate precursor proteins through proteolytic cleavage within the secretory pathway. PCs comprise several enzymes that are basic amino acid-specific proteinases (furin, PC1/3, PC2, PC4, PACE4, PC5/6, and PC7), as well as nonbasic amino acid convertases (S1P and PC9) (1). PCs have a common structure that includes an N-terminal signal peptide for secretory pathway targeting; a pro-domain that is thought to act as an intramolecular chaperone; a catalytic domain containing the active site; a P-domain that contributes to the overall folding of the enzyme by regulating stability, calcium-, and pH-dependence; and a C-terminal domain that interacts with the membrane (2). PCs act in a tissue- and substrate-specific fashion to generate an array of bioactive peptides and proteins from precursors, both in the brain and the periphery (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Chromodomain-helicase-DNA-binding domain (CHD) proteins have been identified in a variety of organisms (1,2). This family of nine proteins is divided into three separate subfamilies: subfamily I (CHD1 and CHD2), subfamily II (CHD3 and CHD4), and subfamily III (CHD5, CHD6, CHD7, CHD8, and CHD9). All CHD proteins contain two tandem amino-terminal chromodomains, a SWI/SNF-related ATPase domain, and a carboxy-terminal DNA-binding domain (1,2). The chromodomains facilitate binding to methylated lysine residues of histone proteins and confer interactions with specific regions of chromatin. The SWI/SNF-related ATPase domain utilizes energy from ATP hydrolysis to modify chromatin structure. CHD proteins are often found in large, multiprotein complexes with their transcriptional activation or repression activity governed by other proteins within the complex. CHD3 (also known as Mi2-α) and CHD4 (also known as Mi2-β) are central components of the nucleosome remodeling and histone deacetylase (NuRD) transcriptional repressor complex, which also contains HDAC1, HDAC2, RBAP48, RBAP46, MTA1, MTA2, MTA3, and MBD3 (3-8). Both CHD3 and CHD4 contain two plant homeodomain (PHD) zinc finger domains that bind directly to HDAC1 and HDAC2.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: NFI-C belongs to the nuclear factor I (NFI) family of site-specific transcription factors that regulate viral DNA replication and expression of various genes (1,2). The NFI family is composed of four members in vertebrates: NFI-A, NFI-B, NFI-C, and NFI-X, all of which are critical in the development of multiple organ systems in mice and humans (3). NFI-C is expressed in various tissues and regulates TGF-β dependent tooth development and hair follicle cycling (3-5). Research studies have shown that NFI-C directly represses FoxF1 transcription and suppresses the motility and invasiveness of breast cancer cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ewing sarcoma (EWS) protein is a member of the multifunctional FET (FUS, EWS, and TAF15) family of proteins (1,2). These proteins are RNA and DNA binding proteins that are thought to be important for both transcriptional regulation and RNA processing. EWS can be found as part of a fusion protein with various E-twenty six (ETS) family transcription factors, most commonly Fli-1, in the Ewing sarcoma family of tumors (1-4). The amino terminus of the EWS protein, containing the transcriptional activation domain, is fused to the DNA binding domain of the ETS transcription factor, causing aberrant expression of target genes (1-5). EWS interacts with the transcription initiation complex via TFIID and RNA polymerase II subunits, as well as transcriptional regulators, such as Brn3A and CBP/p300, which suggests a role for EWS in transcriptional regulation (1,6-9). EWS also interacts with multiple components of the splicing machinery, implicating a role for EWS in RNA processing (1,10-12). EWS regulates the expression of cyclin D1, which controls G1-S phase transition during the cell cycle, at the level of transcriptional activation and mRNA splicing. The EWS-Fli-1 fusion protein has been shown to promote the expression of the cyclin D1b splice variant in Ewing sarcoma cells (13). In addition, EWS regulates the DNA damage-induced alternative splicing of genes involved in DNA repair and stress response and is required for cell viability upon DNA damage (14). Consistent with these results, EWS knockout mice display hypersensitivity to ionizing radiation and premature cellular senescence, suggesting a role for EWS in homologous recombination and maintenance of genomic stability (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Malate dehydrogenase (MDH) is a key enzyme in the tricarboxylic acid cycle and malate/aspartate shuttle (1,2). MDH is widely expressed in organisms from most bacteria to all eukaryotes (2). The cytoplasmic MDH isoenzyme (cMDH or MDH1) primarily reduces oxaloacetate to malate in the malate/aspartate shuttle (1-3). The major function of the mitochondrial MDH isoenzyme (mMDH or MDH2) is to oxidize malate to oxaloacetate in the tricarboxylic acid cycle (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Western Blotting

Background: PAI-1 is a secreted protein that belongs to the serine proteinase inhibitor (serpin) superfamily. It inhibits urokinase and tissue plasminogen activators (uPA and tPA) and thus, reduces the conversion of inactive plasminogen to plasmin (1). PAI-1 regulates fibrinolysis and plays an important role in vessel patency and tissue remodeling. Secreted PAI-1 interacts with the extracellular matrix (ECM) component vitronectin, thereby modulating cell-ECM interactions (2,3). PAI-1 is expressed in a variety of tissues with higher expression in liver, vascular endothelial cells, platelets, macrophages, and adipose tissue (1). Increased levels of PAI-1 are associated with deep vein thrombosis (4). Defects in PAI-1 cause plasminogen activator inhibitor-1 deficiency (PAI-1D), which is characterized by increased bleeding after injury or surgery (5). Research studies have shown that high levels of PAI-1 are associated with obesity, aging, insulin resistance, and type 2 diabetes (6-8). PAI-1 is transcriptionally regulated by TGF-β and mediates TGF-β-induced inhibition of cell migration and invasion in cancer cells (9). Studies have shown PAI-1 to be also involved in fibrosis (10).

$262
3 nmol
300 µl
SignalSilence® MDR1/ABCB1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit MDR1/ABCB1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: MDR1/ABCB1 belongs to the Mdr/Tap subfamily of the ATP-binding cassette transporter superfamily (1). Multidrug resistance 1 (MDR1) serves as an efflux pump for xenobiotic compounds with broad substrate specificity. MDR1 substrates include therapeutic agents such as actinomycin D, etoposide, imatinib, and doxorubicin, as well as endogenous molecules including β-amyloids, steroid hormones, lipids, phospholipids, cholesterol, and cytokines (2). Research studies have shown that MDR1 reduces drug accumulation in cancer cells, allowing the development of drug resistance (3-5). On the other hand, MDR1 expressed in the plasma membrane of cells in the blood-brain, blood-cerebral spinal fluid, or blood-placenta barriers restricts the permeability of drugs into these organs from the apical or serosal side (6,7). MDR1 is also expressed in normal tissues with excretory function such as small intestine, liver, and kidney (7). Intracellular MDR1 has been detected in the ER, vesicles, and nuclear envelope, and has been associated with cell trafficking machinery (8). Other reported functions of MDR1 include viral resistance, cytokine trafficking (9,10), and lipid homeostasis in the peripheral and central nervous system (11-13).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Wild-type p53 induced phosphatase 1 (WIP1)/protein phosphatase magnesium-dependent 1 delta (ppm1d) is a member of the PP2C family of serine/threonine protein phosphatases. WIP1 was initially identified as a p53 target gene, induced in response to ionizing radiation (1). Studies have shown that WIP1 is overexpressed in human cancers and is involved in the regulation of multiple DNA damage signaling pathways (reviewed in 2,3). WIP1 functions in returning cells to a homeostatic state following DNA damage (4,5), as well as in maintaining p53-dependent homeostasis under nonstress conditions (6). Researchers have shown that increased expression of WIP1 is associated with poor prognosis and lower survival rate in some human cancers (7,8). In contrast, overexpression of WIP1 in p53-negative tumor cells sensitizes them to chemotherapy-induced apoptosis while protecting normal tissue during treatment (9).

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$314
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: N-myc downstream-regulated gene 1 (NDRG1), also termed Cap43, Drg1, RTP/rit42, and Proxy-1, is a member of the NDRG family, which is composed of four members (NDRG1-4) that function in growth, differentiation, and cell survival (1-5). NDRG1 is ubiquitously expressed and highly responsive to a variety of stress signals including DNA damage (4), hypoxia (5), and elevated levels of nickel and calcium (2). Expression of NDRG1 is elevated in N-myc defective mice and is negatively regulated by N- and c-myc (1,6). During DNA damage, NDRG1 is induced in a p53-dependent fashion and is necessary for p53-mediated apoptosis (4,7). Research studies have shown that NDRG1 may also play a role in cancer progression by promoting differentiation, inhibiting growth, and modulating metastasis and angiogenesis (3,4,6,8,9). Nonsense mutation of the NDRG1 gene has been shown to cause hereditary motor and sensory neuropathy-Lom (HMSNL), which is supported by studies demonstrating the role of NDRG1 in maintaining myelin sheaths and axonal survival (10,11). NDRG1 is up-regulated during mast cell maturation and its deletion leads to attenuated allergic responses (12). Both NDRG1 and NDRG2 are substrates of SGK1, although the precise physiological role of SGK1-mediated phosphorylation is not known (13). NDRG1 is phosphorylated by SGK1 at Thr328, Ser330, Thr346, Thr356, and Thr366. Phosphorylation by SGK1 primes NDRG1 for phosphorylation by GSK-3.

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). DUBs are categorized into 5 subfamilies: USP, UCH, OTU, MJD, and JAMM. UCHL1, UCHL3, UCHL5/UCH37, and BRCA-1-associated protein-1 (BAP1) belong to the ubiquitin carboxy-terminal hydrolase (UCH) family of DUBs, which all possess a conserved catalytic UCH domain of about 230 amino acids. UCHL5 and BAP1 have unique, extended carboxy-terminal tails. UCHL1 is abundantly expressed in neuronal tissues and testes, while UCHL3 expression is more widely distributed (3,4). Although UCHL1 and UCHL3 are the most closely related UCH family members with about 53% identity, their biochemical properties differ in that UCHL1 binds monoubiquitin and UCHL3 shows dual specificity toward both ubiquitin (Ub) and NEDD8, a Ub-like molecule.UCHL1 (PGP 9.5/PARK5) functions as a deubiquitinating enzyme and monoubiquitin stabilizer. In vitro studies have demonstrated that UCHL1 can hydrolyze isopeptide bonds between the carboxy-terminal glycine of Ub and the ε-amino group of lysine on target proteins. UCHL1 is also involved in the cotranslational processing of pro-ubiquitin and ribosomal proteins translated as ubiquitin fusions (5-7). Mice deficient in UCHL1 experience spasticity, suggesting that UCHL1 activity is required for the normal neuromuscular junction structure and function (5-7). Research studies have described loss of UCHL1 expression in numerous human malignancies, such as prostate, colorectal, renal, and breast carcinomas. Investigators have shown that loss of UCHL1 expression in breast carcinomas can be attributed to hyper-methylation of the UCHL1 gene promoter (8). While loss of UCHL1 expression is implicated in human carcinogenesis, mutation of UCHL1 has been implicated in neurodegenerative diseases such as Parkinson's and Alzheimer's (6,7).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb #9709.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).