Interested in promotions? | Click here >>

Product listing: Geldanamycin #9843 to Myosin Light Chain 2 Antibody Sampler Kit, UniProt ID P24844 #9776

Molecular Weight:560.64 g/mol

Background: Geldanamycin (GA) is a naturally existing HSP90 inhibitor that belongs to the benzoquinone ansamycin family. GA binds to the amino terminal ATP-binding pocket of HSP90 and inhibits ATP binding and hydrolysis. HSP90 is a chaperone interacting with a wide variety of important target proteins for cell signaling and regulation during tumorgenesis (1,2). The binding of GA to HSP90 interferes with HSP-mediated target protein folding, leading to target aggregation and degradation (1-3). GA and its synthetic derivatives show higher affinity to HSP90 in tumor cells as compared to normal tissues and constitute a class of protential antitumor drugs (2-3).

Molecular Weight:315.76 g/mol

Background: Tyrphostin AG 1478 is a tyrosine kinase inhibitor specifically selective to EGFR (ErbB1), with an IC50 of about 3 nM in vitro (1,2). Treatment of cell with 50-150 nM of AG 1478 can substantially block EGFR activiation in vivo (3). In addition to EGFR, AG 1478 also inhibits ErbB4 activation induced by radiation in cancer cells (4). Testing of AG 1478 alone or in combination with other treatments to assess anti-tumor and anti-fibrotic effectiveness has yielded promising results (5-8).

Molecular Weight:448.95 g/mol

Background: Bisindolylmaleimide I (BIS) is a potent inhibitor of PKC (1,2). In vitro the IC50 of BIS is 10-20 nM for PKCα/β/γ and 100-200 nM for PKCδ/ε isoforms. The in vitro IC50 for PKCζ is about 6 μM, indicating that BIS is a very weak inhibitor for this isoform. In in vivo cellular assays the IC50 of BIS for PKC is between 0.2-2 μM (1,3).

The AMPK Subunit Antibody Sampler Kit provides an economical means to investigate the role played by all AMPK subunits in cellular energy homeostasis. The kit contains enough primary and secondary antibodies to perform two Western blots with each antibody.

Background: AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Inhibitor of DNA-binding/Differentiation (ID) proteins are a family of proteins that function to repress the activity of basic helix-loop-helix (bHLH) transcription factors. There are four known ID proteins in humans (ID1-4), all of which contain a helix-loop-helix domain but lack a basic DNA binding domain. Heterodimerization with bHLH transcription factors therefore functions to sequester bHLH proteins and prevent their binding to DNA (1). ID proteins play important functional roles in development, primarily by inhibiting premature differentiation of stem/progenitor cells (1,2). ID3 plays an important role in immune system development where it has been shown to repress E2A-mediated differentiation of T cells (3). Studies in mouse models have shown that homozygous deletion of ID3 disrupts regulatory T cell differentiation (4) and leads to development of γδ T cell lymphoma (5). Outside of the hematopoietic compartment, ID3 was shown to repress MyoD, implicating ID3 in TGFβ-mediated muscle repair (6). Similarly, research studies have shown that ID3 suppresses p21 in colon cancer cells, a function that is purported to promote the self-renewal capacity of putative cancer-initiating cells (7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated E-Cadherin (24E10) Rabbit mAb #3195.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Glycogen synthase kinase-3 (GSK-3) was initially identified as an enzyme that regulates glycogen synthesis in response to insulin (1). GSK-3 is a ubiquitously expressed serine/threonine protein kinase that phosphorylates and inactivates glycogen synthase. GSK-3 is a critical downstream element of the PI3K/Akt cell survival pathway whose activity can be inhibited by Akt-mediated phosphorylation at Ser21 of GSK-3α and Ser9 of GSK-3β (2,3). GSK-3 has been implicated in the regulation of cell fate in Dictyostelium and is a component of the Wnt signaling pathway required for Drosophila, Xenopus, and mammalian development (4). GSK-3 has been shown to regulate cyclin D1 proteolysis and subcellular localization (5).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected, Human, Monkey, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Peptide ELISA (DELFIA), Western Blotting

Background: Acetylation of lysine, like phosphorylation of serine, threonine or tyrosine, is an important reversible modification controlling protein activity. The conserved amino-terminal domains of the four core histones (H2A, H2B, H3, and H4) contain lysines that are acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (1). Signaling resulting in acetylation/deacetylation of histones, transcription factors, and other proteins affects a diverse array of cellular processes including chromatin structure and gene activity, cell growth, differentiation, and apoptosis (2-6). Recent proteomic surveys suggest that acetylation of lysine residues may be a widespread and important form of posttranslational protein modification that affects thousands of proteins involved in control of cell cycle and metabolism, longevity, actin polymerization, and nuclear transport (7,8). The regulation of protein acetylation status is impaired in cancer and polyglutamine diseases (9), and HDACs have become promising targets for anti-cancer drugs currently in development (10).

The KinomeView® Profiling Kit provides a set of Phospho-Motif Antibodies that cover a large portion of the kinome and react broadly with serine, threonine, and tyrosine phosphorylation mediated by diverse kinase families throughout the kinome. This kit will provide researchers with an immunoblotting strategy to dissect the complexity of the phosphoproteome and determine the kinase families involved in the regulation of diverse physiological processes. By using the provided Phospho-motif Antibodies, the investigator can assess global changes in protein phosphorylation by western analysis across a range of experimental samples and conditions.
$98
1000 ml
Phosphate Buffered Saline (PBS) solution with the detergent Tween® 20 for use as a wash buffer and diluent for ELISA. 1 X PBST contains 3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl, 0.05% Tween® 20, pH 7.4.
$87
1000 ml
Phosphate Buffered Saline (PBS) formulated to be used as a buffer for ELISA. 1 X PBS contains 3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl, pH 7.4.
Molecular Weight:853.92 g/mol

Background: Paclitaxel belongs to the taxane family of antitumor and antileukemic agents (3). By binding to β-tubulin and promoting the assembly of microtubules, paclitaxel prevents microtubual depolymerization and blocks normal cell division (1-3). The microtubule dysfunction induced by paclitaxel results in aberrant cell mitosis and sometimes apoptosis. The IC50 of paclitaxel-induced mitotic block is 4 nM (4).

$64
15 ml
RIPA buffer is used to lyse cells and tissues.
APPLICATIONS

Application Methods: Western Blotting

Adenosine-5'-triphosphate (ATP) supplied as a 10 mM solution in doubly distilled water as a disodium salt.
$64
15 ml
Cell Lysis Buffer is used to lyse cells under nondenaturing conditions.
Kinase Buffer can be used to assay protein kinase activity.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The mitochondrial flavoenzymes acyl-CoA dehydrogenases (ACADs) catalyze the α,β dehydrogenation of acyl-CoA esters (1). One of these enzymes, ACAD9, is essential for assembly of oxidative phosphorylation complex I (2). Studies have shown that ACAD9 gene mutations cause Complex I deficiency (2,3).

The SHP-2 Antibody Sampler Kit provides an economical means to evaluate levels of SHP-2 protein phosphorylated at the specified sites, as well as total SHP-2 levels. The kit contains enough primary and secondary antibody to perform two western blot experiments per antibody.

Background: SHP-2 (PTPN11) is a ubiquitously expressed, nonreceptor protein tyrosine phosphatase (PTP). It participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrices in the control of cell growth, differentiation, migration, and death (1). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of several growth factor receptors and cytokines (2). In addition to its role in Gab1-mediated Erk activation, SHP-2 attenuates EGF-dependent PI3 kinase activation by dephosphorylating Gab1 at p85 binding sites (3). SHP-2 becomes phosphorylated at Tyr542 and Tyr580 in its carboxy-terminus in response to growth factor receptor activation (4). These phosphorylation events are thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (5). Mutations in the corresponding gene result in a pair of clinically similar disorders (Noonan syndrome and LEOPARD syndrome) that may result from abnormal MAPK regulation (6).

The p38 MAPK Isoform Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of individual isoforms of p38 MAPK through immunoprecipitation of the phosphorylated p38 MAPK followed by western blot using isoform specific antibodies. The kit includes enough primary and secondary antibodies to perform two IP/western blot experiments.

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

The Phospho-EGF Receptor Pathway Sampler Kit provides an economical means to evaluate the activation status of multiple members of the EGF receptor pathway, including phosphorylated EGF receptor, Stat5, c-Cbl, Shc, Gab1, PLCγ1, Akt and p44/42 MAPK. The kit includes enough primary and secondary antibodies to perform two western blot experiments.

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

The Polycomb Group Antibody Sampler Kit provides an economical means of evaluating total levels of Polycomb Group Proteins. The kit contains enough primary and secondary antibodies to perform two western mini-blot experiments.

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell-cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, Eed-Ezh2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. This histone methyltransferase activity requires the Ezh2, Eed, and Suz12 subunits of the complex (5). Methylation of Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinates histone H2A on Lys119 (6). PRC1 is composed of Bmi1 and RING1A (also RING1 or RNF1), both of which act to enhance the E3 ubiquitin ligase activity of an additional catalytic subunit RING1B (also RING2 or RNF2) (7). PcG proteins play an important role in the regulation of cell proliferation and senescence through repression of the p16 INK4A and p19 ARF genes and are required for maintenance of adult hematopoietic and neural stem cells, as well as embryonic stem cells (3,4,8-10).

The Sirtuin Antibody Sampler Kit provides an economical means of evaluating total levels of sirtuin proteins. The kit includes enough antibody to perform at least two western blot experiments with each primary antibody.
The Alzheimer's Disease Antibody Sampler Kit provides an economical means of evaluating Alzheimer's Disease-related signaling. The kit contains enough primary and secondary antibodies to perform two western blot experiments per primary antibody.
Tri-Methyl Histone H3 Antibody Sampler Kit offers an economical means to evaluate the tri-methylation of Histone H3 on multiple residues. The kit contains enough primary antibody to perform two western blot experiments per primary.

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

The Epithelial-Mesenchymal Transition (EMT) Antibody Sampler Kit provides an economical means of evaluating EMT. The kit contains enough primary antibody to perform two western blots per primary.
The Neurofilament Antibody Sampler Kit provides an economical means of evaluating neurofilaments. The kit contains enough primary and secondary antibodies to perform two western blot experiments per primary antibody.

Background: The cytoskeleton consists of three types of cytosolic fibers: actin microfilaments, intermediate filaments, and microtubules. Neurofilaments are the major intermediate filaments found in neurons and consist of light (NFL), medium (NFM), and heavy (NFH) subunits (1). Similar in structure to other intermediate filament proteins, neurofilaments have a globular amino-terminal head, a central α-helical rod domain, and a carboxy-terminal tail. A heterotetrameric unit (NFL-NFM and NFL-NFH) forms a protofilament, with eight protofilaments comprising the typical 10 nm intermediate filament (2). While neurofilaments are critical for radial axon growth and determine axon caliber, microtubules are involved in axon elongation. PKA phosphorylates the head domain of NFL and NFM to inhibit neurofilament assembly (3,4). Research studies have shown neurofilament accumulations in many human neurological disorders including Parkinson's disease (in Lewy bodies along with α-synuclein), Alzheimer's disease, Charcot-Marie-Tooth disease, and Amyotrophic Lateral Sclerosis (ALS) (1).

The PP2A Antibody Sampler Kit provides an economical means of evaluating PP2A protein. The kit contains enough primary and secondary antibodies to perform two western blots with each antibody.

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

The Pim Kinase Antibody Sampler Kit provides an economical means to detect all three Pim kinases along with Bad and Phospho-Bad (Ser112). The kit contains enough primary and secondary antibody to perform two western blot experiments.

Background: Pim proteins (Pim-1, Pim-2 and Pim-3) are oncogene-encoded serine/threonine kinases (1). Pim-1, a serine/threonine kinase highly expressed in hematopoietic cells, plays a critical role in the transduction of mitogenic signals and is rapidly induced by a variety of growth factors and cytokines (1-4). Pim-1 cooperates with c-Myc in lymphoid cell transformation and protects cells from growth factor withdrawal and genotoxic stress-induced apoptosis (5,6). Pim-1 also enhances the transcriptional activity of c-Myb through direct phosphorylation within the c-Myb DNA binding domain as well as phosphorylation of the transcriptional coactivator p100 (7,8). Hypermutations of the Pim-1 gene are found in B-cell diffuse large cell lymphomas (9). Phosphorylation of Pim-1 at Tyr218 by Etk occurs following IL-6 stimulation and correlates with an increase in Pim-1 activity (10). Various Pim substrates have been identified; Bad is phosphorylated by both Pim-1 and Pim-2 at Ser112 and this phosphorylation reverses Bad-induced cell apoptosis (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Pirin is a highly conserved nuclear protein and a member of the cupin superfamily of proteins, all of which contain two conserved β-barrel fold domains (1). Pirin functions as a co-factor for NFI/CTF1 and Bcl-3, implicating it in DNA replication, transcriptional activation and apoptosis (2,3). Both human and bacterial pirins catalyze the di-oxygenation of quercetin, one of a class of widespread naturally occurring flavenoid compounds that have anti-inflammatory and anti-cancer activities (4). Flavenoids exert these beneficial activities by functioning as antioxidants that stabilize cellular free radical molecules and by directly modulating cell signaling pathways involving PI 3-kinase, Akt/PKB, PKC and MAP kinases (5). Quercetin has also been directly implicated in the regulation of NF-κB activity; thus, Pirin may exert its apoptotic functions both by directly regulating Bcl-3/NF-κB activity and by modulating quercetin levels in the cell (6).

The Myosin Light Chain 2 Antibody Sampler Kit provides an economical means to detect total, phosphorylated, and dual-phosphorylated myosin light chain 2. The kit contains enough primary and secondary antibody to perform two western blot experiments.

Background: Myosin is composed of six polypeptide chains: two identical heavy chains and two pairs of light chains. Myosin light chain 2 (MLC2), also known as myosin regulatory light chain (MRLC), RLC, or LC20, has many isoforms depending on its distribution. In smooth muscle, MLC2 is phosphorylated at Thr18 and Ser19 by myosin light chain kinase (MLCK) in a Ca2+/calmodulin-dependent manner (1). This phosphorylation is correlated with myosin ATPase activity and smooth muscle contraction (2). ROCK also phosphorylates Ser19 of smooth muscle MLC2, which regulates the assembly of stress fibers (3). Phosphorylation of smooth muscle MLC2 at Ser1/Ser2 and Ser9 by PKC and cdc2 has been reported to inhibit myosin ATPase activity (4,5). Phosphorylation by cdc2 controls the timing of cytokinesis (5). Transgenic mice lacking phosphorylation sites on the cardiac muscle isoform show morphological and functional abnormalities (6).