Microsize antibodies for $99 | Learn More >>

Product listing: NF-κB p65 (L8F6) Mouse mAb, UniProt ID Q04206 #6956 to Argonaute 4 (D10F10) Rabbit mAb, UniProt ID Q9HCK5 #6913

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Dog, Hamster, Human, Mink, Monkey, Mouse, Pig, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: G protein-coupled receptor (GPCR) kinase interacting proteins 1 and 2 (GIT1 and GIT2) are highly conserved, ubiquitous scaffold proteins involved in localized signaling to help regulate focal contact assembly and cytoskeletal dynamics. GIT proteins contain multiple interaction domains that allow interaction with small GTPases (including ARF, Rac, and cdc42), kinases (such as PAK and MEK), the Rho family GEF Pix, and the focal adhesion protein paxillin (reviewed in 1). GIT1 and GIT2 share many of the same properties, but with at least ten distinct, tissue-specific splice variants. GIT2 has been shown to play an important role inhibiting focal adhesion turnover and membrane protrusion (2,3). Focal adhesion localization and paxillin binding of GIT2 is regulated through phosphorylation at one or more tyrosine sites (Tyr286, Tyr392, Tyr592) by FAK and/or Src (4,5,reviewed in 6). Once at the focal adhesion, GIT2 is thought to play a key role in cell polarity and migration, making it a protein of interest in the investigation of oncogenic signaling pathways (3,5,7).

$303
100 µl
This Cell Signaling Technology® antibody is conjugated by the covalent reaction of hydrazinonicotinamide-modified antibody with formylbenzamide-modified horseradish peroxidase (HRP). The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Acetylated-Lysine (Ac-K-100) MultiMab™ Rabbit mAb mix (HRP Conjugate) #9814.
APPLICATIONS
REACTIVITY
All Species Expected, Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Acetylation of lysine, like phosphorylation of serine, threonine or tyrosine, is an important reversible modification controlling protein activity. The conserved amino-terminal domains of the four core histones (H2A, H2B, H3, and H4) contain lysines that are acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (1). Signaling resulting in acetylation/deacetylation of histones, transcription factors, and other proteins affects a diverse array of cellular processes including chromatin structure and gene activity, cell growth, differentiation, and apoptosis (2-6). Recent proteomic surveys suggest that acetylation of lysine residues may be a widespread and important form of posttranslational protein modification that affects thousands of proteins involved in control of cell cycle and metabolism, longevity, actin polymerization, and nuclear transport (7,8). The regulation of protein acetylation status is impaired in cancer and polyglutamine diseases (9), and HDACs have become promising targets for anti-cancer drugs currently in development (10).

$364
100 µl
This Cell Signaling Technology® antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Pan-Methyl-Histone H3 (Lys9) (D54) XP® Rabbit mAb #4473.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$303
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Akt Substrate (RXXS*/T*) (110B7E) Rabbit mAb #9614.
APPLICATIONS
REACTIVITY
All Species Expected, D. melanogaster, Mouse

Application Methods: Western Blotting

Background: An important class of kinases, referred to as Arg-directed kinases or AGC-family kinases, includes cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), protein kinase C, Akt, and RSK. These kinases share a substrate specificity characterized by Arg at position -3 relative to the phosphorylated Ser or Thr (1,2). Akt plays a central role in mediating critical cellular responses including cell growth and survival, angiogenesis, and transcriptional regulation (3-5). While a number of Akt substrates are known (such as GSK-3, Bad, and caspase-9) many important substrates await discovery. Akt phosphorylates substrates only at Ser/Thr in a conserved motif characterized by Arg at positions -5 and -3 (6). Phospho-Akt substrate-specific antibodies from Cell Signaling Technology are powerful tools for investigating the regulation of phosphorylation by Akt and other Arg-directed kinases, as well as for high throughput kinase drug discovery.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Bak is a proapoptotic member of the Bcl-2 family (1). This protein is located on the outer membrane of mitochondria and is an essential component for transduction of apoptotic signals through the mitochondrial pathway (2,3). Upon apoptotic stimulation, an upstream stimulator like truncated BID (tBID) induces conformational changes in Bak to form oligomer channels in the mitochondrial membrane for cytochrome c release. The release of cytochrome c to the cytosol activates the caspase-9 pathway and eventually leads to cell death (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: PTEN induced putative kinase 1, PINK1, is a mitochondrial serine/threonine kinase involved in the normal function and integrity of mitochondria, as well as in reduction of cytochrome c release from mitochondria (1-3). PINK1 phosphorylates Parkin and promotes its translocation to mitochondria (2). Research studies have shown that mutations in PINK1 are linked to autosomal recessive early onset Parkinson’s disease, and are associated with loss of protective function, mitochondrial dysfunction, aggregation of α-synuclein, as well as proteasome dysfunction (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TNF-α, the prototypical member of the TNF protein superfamily, is a homotrimeric type-II membrane protein (1,2). Membrane-bound TNF-α is cleaved by the metalloprotease TACE/ADAM17 to generate a soluble homotrimer (2). Both membrane and soluble forms of TNF-α are biologically active. TNF-α is produced by a variety of immune cells including T cells, B cells, NK cells, and macrophages (1). Cellular response to TNF-α is mediated through interaction with receptors TNF-R1 and TNF-R2 and results in activation of pathways that favor both cell survival and apoptosis depending on the cell type and biological context. Activation of kinase pathways (including JNK, Erk1/2, p38 MAPK, and NF-κB) promotes the survival of cells, while TNF-α-mediated activation of caspase-8 leads to programmed cell death (1,2). TNF-α plays a key regulatory role in inflammation and host defense against bacterial infection, notably Mycobacterium tuberculosis (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The ErbB2 (HER2) proto-oncogene encodes a 185 kDa transmembrane, receptor-like glycoprotein with intrinsic tyrosine kinase activity (1). While ErbB2 lacks an identified ligand, ErbB2 kinase activity can be activated in the absence of a ligand when overexpressed and through heteromeric associations with other ErbB family members (2). Amplification of the ErbB2 gene and overexpression of its product are detected in almost 40% of human breast cancers (3). Binding of the c-Cbl ubiquitin ligase to ErbB2 at Tyr1112 leads to ErbB2 poly-ubiquitination and enhances degradation of this kinase (4). ErbB2 is a key therapeutic target in the treatment of breast cancer and other carcinomas and targeting the regulation of ErbB2 degradation by the c-Cbl-regulated proteolytic pathway is one potential therapeutic strategy. Phosphorylation of the kinase domain residue Tyr877 of ErbB2 (homologous to Tyr416 of pp60c-Src) may be involved in regulating ErbB2 biological activity. The major autophosphorylation sites in ErbB2 are Tyr1248 and Tyr1221/1222; phosphorylation of these sites couples ErbB2 to the Ras-Raf-MAP kinase signal transduction pathway (1,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$348
400 µl
This Cell Signaling Technology antibody is immobilized by the covalent reaction of hydrazinonicotinamide-modifed antibody with formylbenzamide-modified magnetic bead. EGF Receptor (D38B1) XP® Rabbit mAb (Magnetic Bead Conjugate) is useful for immunoprecipitation assays of EGF receptor protein. The unconjugated EGF Receptor (D38B1) XP® Rabbit mAb #4267 reacts with human, mouse, and monkey EGF Receptor protein. CST expects that EGF Receptor (D38B1) XP® Rabbit mAb (Magnetic Bead Conjugate) will also recognize EGF Receptor in these species.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that causes symptoms including hamartomas in brain, kidney, heart, lung and skin (1). The tumor suppressor genes TSC1 and TSC2 encode hamartin and tuberin, respectively (2,3). Hamartin and tuberin form a functional complex and are involved in numerous cellular activities such as vesicular trafficking, regulation of the G1 phase of the cell cycle, steroid hormone regulation, Rho activation and anchoring neuronal intermediate filaments to the actin cytoskeleton (4-9). The combination of genetic, biochemical and cell-biological studies demonstrate that the tuberin/hamartin complex functions as a GTPase-activating protein for the Ras-related small G protein Rheb and thus inhibits targets of rapamycin including mTOR. Cells lacking hamartin or tuberin fail to inhibit phosphorylation of S6 kinase resulting in the activation of S6 ribosomal protein's translation of 5'TOP mRNA transcripts (10). Hamartin is phosphorylated by CDK1 (cdc2) at Thr417, Ser584 and Thr1047 in cells in G2/M phase of the cell cycle (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: CTD small phosphatase-like protein 2 (CTDSPL2, HSPC129) is a putative RNA-polymerase II carboxy-terminal domain (CTD) phosphatase (1) that belongs to a small subfamily of CTD phosphatases (2). The CTD of RNA polymerase II contains multiple Y-S-P-T-S-P-S repeats that are phosphorylated during the transcription cycle (3,4). In general, CTD phosphatases regulate the reversible CTD phosphorylation state of RNA-polymerase II at several stages of RNA synthesis and during post-transcriptional modification (4-6). CTDSPL2 has several structural and functional similarities to other CTD phosphatases, including FCP1, SCP1, DULLARD, and UBLCP1 (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CTP:phosphocholine cytidylyltransferase (CCT) is a critical enzyme that regulates the CDP-choline pathway for the biosynthesis of phosphatidylcholine. Three distinct CCT isoforms are found in mammals, including CCTα, CCTβ2, and CCTβ3 (1,2). CCTα is the major isoform that is expressed in most tissues (3). CCTα is essential in the synthesis and secretion of surfactant by alveolar epithelial cells and is important in maintaining the phosphatidylcholine level that regulates lipoprotein assembly and secretion in hepatocytes (4,5). CCTα is a major component in membrane biogenesis during cytokine secretion by stimulated macrophages (6). Monoubiquitination of CCTα prevents it from entering the nucleus and leads to its degradation by lysosome (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: TBC1D1 is a paralog of AS160 (1) and both proteins share about 50% identity (2). TBC1D1 was shown to be a candidate gene for severe obesity (3). It plays a role in Glut4 translocation through its GAP activity (2,4). Studies indicate that TBC1D1 is highly expressed in skeletal muscle (1). Insulin, AICAR, and contraction directly regulate TBC1D1 phosphorylation in this tissue (1). Three AMPK phosphorylation sites (Ser231, Ser660, and Ser700) and one Akt phosphorylation site (Thr590) were identified in skeletal muscle (5). Muscle contraction or AICAR treatment increases phosphorylation on Ser231, Ser660, and Ser700 but not on Thr590; insulin increases phosphorylation on Thr590 only (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: TBC1D1 is a paralog of AS160 (1) and both proteins share about 50% identity (2). TBC1D1 was shown to be a candidate gene for severe obesity (3). It plays a role in Glut4 translocation through its GAP activity (2,4). Studies indicate that TBC1D1 is highly expressed in skeletal muscle (1). Insulin, AICAR, and contraction directly regulate TBC1D1 phosphorylation in this tissue (1). Three AMPK phosphorylation sites (Ser231, Ser660, and Ser700) and one Akt phosphorylation site (Thr590) were identified in skeletal muscle (5). Muscle contraction or AICAR treatment increases phosphorylation on Ser231, Ser660, and Ser700 but not on Thr590; insulin increases phosphorylation on Thr590 only (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: TRXR1 (thioredoxin reductase 1) is a selenocysteine-containing protein that is involved in redox homeostasis (1-6). Its canonical target is thioredoxin, another redox protein (1). Together, they are involved in many functions such as antioxidant regulation (3-6), cell proliferation (2,3,5), DNA replication (2,3), and transcription (3,5). TRXR1 is also capable of reducing a wide array of cellular proteins (1,3). Selenium deficiency, either by diet modification (2,6) or introduction of methylmercury (4), hinders proper expression and function of TRXR1. It is possible that this effect, which results in a higher oxidative state, is a result of the selenocysteine codon (UGA) being read as a STOP codon in the absence of adequate selenium (4). The functions of TRXR1 in cell proliferation and antioxidant defense make it a potential therapeutic target.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: PCK2 (PEPCK2 or PEPCK-M) encodes an isoform of phosphoenolpyruvate carboxykinase (PEPCK) that is found in the mitochondria of renal and hepatic tissues (1). PEPCK is involved in gluconeogenesis, the process of generating glucose from non-carbohydrate substrates such as lactate and glycerol (2). PEPCK catalyzes the reaction whereby oxaloacetate becomes phosphoenolpyruvate, a rate limiting step in the metabolic process (2). The predominant function of PCK2 is to process the lactate that is continually produced by red blood cells in the liver and kidney (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Aconitase 2 (ACO2) catalyzes the conversion of citrate to isocitrate via cis-aconitate in the second step of the tricarboxylic acid (TCA) cycle (1,2). ACO2 is also an important regulator of iron homeostasis within cells (1-4). In addition, research studies have shown that this enzyme is deficient in the mitochondrial disease Friedreich's Ataxia (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mena (mammalian enabled), EVL, and VASP are members of the Ena/VASP family, which is involved in controlling cell shape and cell movement by shielding actin filaments from capping proteins (1). Ena/VASP proteins have three specific domains: an amino-terminal EVH1 domain controlling protein localization; a central proline-rich domain mediating interactions with both SH3 and WW domain containing proteins, including profilin; and a carboxy-terminal domain causing tetramerization and binding to actin (2). Mena interacts with actin filaments at the growing ends localizing to lamellipodia and to tips of growth cone filopodia in neurons. Axons projecting from interhemispheric cortico-cortical neurons are misrouted in newborn, homozygous Mena knock-out mice (3). Mena is phosphorylated at Ser236 by PKA, thereby promoting filopodial formation and elongation in the growth cone (4).Three forms of Mena corresponding to 80, 88 and 140 kD are known. The 80 kD protein is broadly expressed in contrast to the 140 kD protein which is enriched in neural cell types. Alternative splicing produces these forms. The 88 kD protein is mainly found in embryonic cell types and is likely the result of post-translational modification. Expression of all three forms is completely eliminated in Mena homozygous mutant animals (1, 3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Salt-inducible kinase 1 (SIK1) was originally identified as a serine/threonine kinase from adrenocortical tissues of rats on a high salt diet (1). SIK1 is a SNF1/AMPK family kinase capable of autophosphorylation (1). SIK2 is an isoform of SIK1 and is specifically expressed in adipose tissues where it is induced during adipocyte differentiation (2). Studies suggest that SIK2 can phosphorylate human insulin receptor substrate (IRS-1) at Ser794. Along with evidence that SIK2 expression and activity are increased in white adipocytes of diabetic mice, this finding suggests a possible role for SIK2 in regulating insulin signaling in adipocytes and in the development of insulin resistance (2,3). Insulin triggers Akt2-mediated phosphorylation of SIK2 at Ser358 and the resultant kinase activation during post-fasting feeding (4). The activated SIK2 then induces the phosphorylation of Torc2 at Ser171 resulting in translocation of this transcriptional coactivator from the nucleus to cytoplasm where it is degraded through the ubiquitin pathway, leading to inhibition of gluconeogenic gene expression (4).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: IRAP (also known as LNPEP) was originally described as an insulin-responsive aminopeptidase found in Glut4-containing vesicles (1). It is essentially always in the same compartments as Glut4 and has identical insulin-stimulated translocation patterns as Glut4 (2). IRAP is therefore considered to be a surrogate marker for Glut4 (2). IRAP was later found to be a critical enzyme that regulates the expression and activity of several essential hormones and regulatory proteins, including the Glut4 transporter (3,4). This membrane associated, zinc-dependent cystinyl aminopeptidase acts as both a receptor for angiotensin IV as well as the enzyme that catalyzes the synthesis of this essential hormone from its angiotensinogen precursor (5). IRAP catalyzes the hydrolysis of several peptide hormones, including oxytocin and vasopressin (4). Abnormal IRAP expression or activity is associated with several forms of cancer in humans, including renal and endometrial cancers (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: GFAT1, glutamine:fructose-6-phosphate aminotransferase 1, is the rate-limiting enzyme of the hexosamine biosynthesis pathway (1). This enzyme catalyzes the conversion of fructose-6-phosphate and glutamine to glucosamine-6-phosphate and glutamate (2). The hexosamine biosynthesis pathway generates the building blocks for protein and lipid glycosylation (2). Furthermore, studies suggest that increased activity of this pathway is a contributing factor to hyperglycemia-induced insulin resistance (1,2). GFAT1 is more active in non-insulin-dependent diabetes mellitus (NIDDM) patients (3). Transgenice mice overexpressing this enzyme in skeletal muscle and adipose tissue show an insulin resistance phenotype (4,5). GFAT2, an isoenzyme of GFAT1, was later identified (6, 7). Studies show that the regulation of GFAT2 is different from that of GFAT1, suggesting differential regulation of the hexosamine pathway in different tissues (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Eukaryotic initiation factor 4E (eIF4E) binds to the mRNA cap structure to mediate the initiation of translation (1,2). eIF4E interacts with eIF4G, a scaffold protein that promotes assembly of eIF4E and eIF4A into the eIF4F complex (2). eIF4B is thought to assist the eIF4F complex in translation initiation. Upon activation by mitogenic and/or stress stimuli mediated by Erk and p38 MAPK, Mnk1 phosphorylates eIF4E at Ser209 in vivo (3,4). Two Erk and p38 MAPK phosphorylation sites in mouse Mnk1 (Thr197 and Thr202) are essential for Mnk1 kinase activity (3). The carboxy-terminal region of eIF4G also contains serum-stimulated phosphorylation sites, including Ser1108, Ser1148, and Ser1192 (5). Phosphorylation at these sites is blocked by the PI3 kinase inhibitor LY294002 and by the FRAP/mTOR inhibitor rapamycin.

$293
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The Drosophila piwi gene was identified as being required for the self-renewal of germline stem cells (1). Piwi homologs are well conserved among various species including Arabidopsis, C. elegans, and Homo sapiens (1). Both Miwi and Mili proteins are mouse homologs of Piwi and contain a C-terminal Piwi domain (2). Miwi and Mili bind to Piwi-interacting RNAs (piRNAs) in male germ cells and are essential for spermatogenesis in mice (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Drosha was identified as a nuclear RNase III that catalyzes the initial step of microRNA (miRNA) processing (1). This enzyme processes the long primary transcript pri-miRNAs into stem-looped pre-miRNAs. Interference of Drosha results in the increase of pri-miRNAs and the decrease of pre-miRNAs (1). Drosha exists in a multiprotein complex called Microprocessor along with other components such as DGCR8 (2). Drosha, along with DGCR8, is necessary for miRNA biogenesis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Small non-coding RNAs are important regulators of gene expression in higher eukaryotes (1,2). Several classes of small RNAs, including short interfering RNAs (siRNAs) (3), microRNAs (miRNAs) (4), and Piwi-interacting RNAs (piRNAs) (5), have been identified. MicroRNAs are about 21 nucleotides in length and have been implicated in many cellular processes such as development, differentiation, and stress response (1,2). MicroRNAs regulate gene expression by modulating mRNA translation or stability (2). MicroRNAs function together with the protein components in the complexes called micro-ribonucleoproteins (miRNPs) (2). Among the most important components in these complexes are Argonaute proteins (1,2). There are four members in the mammalian Argonaute family and only Argonaute 2 (Ago2) possesses the Slicer endonuclease activity (1,2). Argonaute proteins participate in the various steps of microRNA-mediated gene silencing, such as repression of translation and mRNA turnover (1).