Microsize antibodies for $99 | Learn More >>

Product listing: SMC2 (D23C5) Rabbit mAb, UniProt ID O95347 #5329 to RKIP (V177) Antibody, UniProt ID P30086 #5291

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Structural maintenance of chromosomes 2 (SMC2) and 4 (SMC4) proteins are subunits of the condensin complex, which enables chromosome condensation and maintains the compaction of chromosomes as they separate to opposite poles during anaphase (1-3). In addition to regulating chromosome condensation, condensin is a general regulator of chromosome architecture and may function to regulate gene expression and DNA repair. SMC proteins contain a hallmark bipartite ATPase domain of the ABC ATPase superfamily, which consists of an N-terminal Walker A motif nucleotide-binding domain and C-terminal Walker B motif catalytic domain that interact to form a functional ATPase (1-3). The two ATPase domains are connected by two coiled coil domains separated by a central hinge region that facilitates protein-protein interactions between partnering SMC proteins. In the case of the condensin complex, SMC2 and SMC4 interact to form a functional ATPase required for chromatin condensation; however, the mechanism by which this ATPase activity regulates chromsome architecture is still being determined. In addition to SMC proteins, condensin contains three auxiliary subunits, which function to regulate condensin ATPase activity. Higher eukaryotes contain two distinct condensin complexes (condensin I and II), both of which contain SMC2 and SMC4 (1-3). Condensin I also contains the auxiliary subunits CAP-D2, CAP-G and CAP-H, while condensin II contains the related auxiliary proteins CAP-D3, CAP-G2 and CAP-H2. The two condensin complexes show different localization patterns during the cell cycle and on chromosomes and both are required for successful mitosis, suggesting distinct functions for each complex (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The jumonji domain-containing protein 2 (JMJD2) family, also known as the JmjC domain-containing histone demethylation protein 3 (JHDM3) family, contains four members: JMJD2A/JHDM3A, JMJD2B/JHDM3B, JMJD2C/JHDM3C, and JMJD2D/JHDM3D. In addition to the JmjC domain, these proteins also contain JmjN, PHD, and tudor domains, the latter of which has been shown to bind to methylated histone H3 at Lys4 and Lys9, and methylated histone H4 at Lys20 (4,5). JMJD2 proteins have been shown to demethylate di- and tri-methyl histone H3 at Lys9 and Lys36 and function as both activators and repressors of transcription (6-11). JMJD2A, JMJD2C, and JMJD2D function as coactivators of the androgen receptor in prostate tumor cells (7). In contrast, JMJD2A also associates with Rb and NCoR corepressor complexes and is necessary for transcriptional repression of target genes (8,9). JMJD2B antagonizes histone H3 Lys9 tri-methylation at pericentric heterochromatin (10). JMJD2C, also known as GASC1, is amplified in squamous cell carcinomas and metastatic lung carcinoma and inhibition of JMJD2C expression decreases cell proliferation (11,12). JMJD2C has also been identified as a downstream target of Oct-4 and is critical for the regulation of self-renewal in embryonic stem cells (13).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dicer is a member of the RNase III family that specifically cleaves double-stranded RNAs to generate microRNAs (miRNAs) (1). After long primary transcript pri-miRNAs are processed to stem-looped pre-miRNAs by Drosha (2), pre-miRNAs are transported to the cytoplasm and further processed by Dicer to produce 22-nucleotide mature miRNAs (3). The mature miRNA then becomes a part of the RNA-Induced Silencing Complex (RISC) and can bind to the 3' UTR of the target mRNA (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Phosphorylation of the eukaryotic initiation factor 2 (eIF2) α subunit is a well-documented mechanism to downregulate protein synthesis under a variety of stress conditions. eIF2 binds GTP and Met-tRNAi and transfers Met-tRNA to the 40S subunit to form the 43S preinitiation complex (1,2). eIF2 promotes a new round of translation initiation by exchanging GDP for GTP, a reaction catalyzed by eIF2B (1,2). Kinases that are activated by viral infection (PKR), endoplasmic reticulum stress (PERK/PEK), amino acid deprivation (GCN2), or heme deficiency (HRI) can phosphorylate the α subunit of eIF2 (3,4). This phosphorylation stabilizes the eIF2-GDP-eIF2B complex and inhibits the turnover of eIF2B. Induction of PKR by IFN-γ and TNF-α induces potent phosphorylation of eIF2α at Ser51 (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GFAT1, glutamine:fructose-6-phosphate aminotransferase 1, is the rate-limiting enzyme of the hexosamine biosynthesis pathway (1). This enzyme catalyzes the conversion of fructose-6-phosphate and glutamine to glucosamine-6-phosphate and glutamate (2). The hexosamine biosynthesis pathway generates the building blocks for protein and lipid glycosylation (2). Furthermore, studies suggest that increased activity of this pathway is a contributing factor to hyperglycemia-induced insulin resistance (1,2). GFAT1 is more active in non-insulin-dependent diabetes mellitus (NIDDM) patients (3). Transgenice mice overexpressing this enzyme in skeletal muscle and adipose tissue show an insulin resistance phenotype (4,5). GFAT2, an isoenzyme of GFAT1, was later identified (6, 7). Studies show that the regulation of GFAT2 is different from that of GFAT1, suggesting differential regulation of the hexosamine pathway in different tissues (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Antiviral innate immunity depends on the combination of parallel pathways triggered by virus detecting proteins in the Toll-like receptor (TLR) family and RNA helicases, such as Rig-I (retinoic acid-inducible gene I) and MDA-5 (melanoma differentiation-associated antigen 5), which promote the transcription of type I interferons (IFN) and antiviral enzymes (1-3). TLRs and helicase proteins contain sites that recognize the molecular patterns of different virus types, including DNA, single-stranded RNA (ssRNA), double-stranded RNA (dsRNA), and glycoproteins. These antiviral proteins are found in different cell compartments; TLRs (i.e. TLR3, TLR7, TLR8, and TLR9) are expressed on endosomal membranes and helicases are localized to the cytoplasm. Rig-I expression is induced by retinoic acid, LPS, IFN, and viral infection (4,5). Both Rig-I and MDA-5 share a DExD/H-box helicase domain that detects viral dsRNA and two amino-terminal caspase recruitment domains (CARD) that are required for triggering downstream signaling (4-7). Rig-I binds both dsRNA and viral ssRNA that contains a 5'-triphosphate end not seen in host RNA (8,9). Though structurally related, Rig-I and MDA-5 detect a distinct set of viruses (10,11). The CARD domain of the helicases, which is sufficient to generate signaling and IFN production, is recruited to the CARD domain of the MAVS/VISA/Cardif/IPS-1 mitochondrial protein, which triggers activation of NF-κB, TBK1/IKKε, and IRF-3/IRF-7 (12-15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). It is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. These proteins are involved in the formation of cytoplasmic vacuoles called autophagosomes that are delivered to lysosomes for degradation.The class III type phosphoinositide 3-kinase (PI3KC3)/Vps34 regulates vacuolar trafficking as well as autophagy (4,5). Multiple proteins have been shown to be associated with Vsp34, including: p105/Vsp15, Beclin-1, UVRAG, Atg14, and Rubicon, which can determine Vsp34 function (6-11). UVRAG (UV radiation resistance-associated gene) is associated with the Beclin-1/PI3KC3 complex and promotes PI3KC3 enzymatic activity and autophagy, while suppressing proliferation (11). Beclin-1 binding to UVRAG promotes both autophagosome maturation and endocytic trafficking (12). UVRAG is also a potential tumor suppressor protein with frameshift mutations observed in colon and gastric carcinomas (13,14).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Apoptosis-inducing factor (AIF, PDCD8) is a ubiquitously expressed flavoprotein that plays a critical role in caspase-independent apoptosis (reviewed in 1,2). AIF is normally localized to the mitochondrial intermembrane space and released in response to apoptotic stimuli (3). Treatment of isolated nuclei with recombinant AIF leads to early apoptotic events, such as chromatin condensation and large-scale DNA fragmentation (3). Studies of AIF knockout mice have shown that the apoptotic activity of AIF is cell type and stimuli-dependent. Also noted was that AIF was required for embryoid body cavitation, representing the first wave of programmed cell death during embryonic morphogenesis (4). Structural analysis of AIF revealed two important regions, the first having oxidoreductase activity and the second being a potential DNA binding domain (3,5). While AIF is redox-active and can behave as an NADH oxidase, this activity is not required for inducing apoptosis (6). Instead, recent studies suggest that AIF has dual functions, a pro-apoptotic activity in the nucleus via its DNA binding and an anti-apoptotic activity via the scavenging of free radicals through its oxidoreductase activity (2,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-S6 Ribosomal Protein (Ser235/236) (D57.2.2E) XP® Rabbit mAb #4858.
APPLICATIONS
REACTIVITY
Human, Mink, Monkey, Mouse, Rat, S. cerevisiae

Application Methods: Flow Cytometry

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060.
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Hamster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunohistochemistry (Paraffin), Western Blotting

Background: RBPSUH (Recombining Binding Protein, SUppressor of Hairless), also termed RBP-J or CSL, is the DNA-binding component of the transcription complex regulated by canonical Notch signaling. In the absence of Notch activation, RBPSUH suppresses target gene expression through interactions with a co-repressor complex containing histone deacetylase. Upon activation of Notch receptors, the Notch intracellular domain (NICD) translocates to the nucleus and binds to RBPSUH. This displaces the co-repressor complex and replaces it with a transcription activation complex that includes Mastermind-like (MAML) proteins and histone acetylase p300, leading to transcriptional activation of Notch target genes (1-3). RBPSUH is also the DNA-binding partner for Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2), a protein critical for latent viral transcription and immortalization of EBV-infected B cells (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Protein-tyrosine phosphatase 1B (PTP1B) is the original member of the protein tyrosine phosphatase (PTP) family of proteins (1). PTP1B is highly expressed in insulin-responsive tissues and negatively regulates insulin, as well as integrin, through dephosphorylation of phosphotyrosine residues (2-4). PTP1B knockout mice show resistance to dietary weight gain and enhanced insulin sensitivity, suggesting a possible role in treatment of obesity as well as type 2 diabetes (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: GAP43 is a nervous system specific, growth-associated protein enriched in growth cones and areas of high plasticity (1). Phosphorylation of GAP43 at Ser41 by PKC is regulated by intracellular Ca2+ and affects the ability of GAP43 to bind calmodulin (2,3). GAP43 is integral to growth cone formation, neurite outgrowth, and the development of a functional cerebral cortex (4,5). Aberrant GAP43 expression can be seen in patients diagnosed with schizophrenia and Alzheimer's disease (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate-, and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are comprised of four subunits (GluR 1-4), which assemble as homo- or hetero-tetramers to mediate the majority of fast excitatory transmissions in the central nervous system. AMPARs are implicated in synapse formation, stabilization, and plasticity (1). In contrast to GluR 2-containing AMPARs, AMPARs that lack GluR 2 are permeable to calcium (2). Post-transcriptional modifications (alternative splicing, nuclear RNA editing) and post-translational modifications (glycosylation, phosphorylation) result in a very large number of permutations, fine-tuning the kinetic properties of AMPARs. Research studies have implicated activity changes in AMPARs in a variety of diseases including Alzheimer’s, amyotrophic lateral sclerosis (ALS), stroke, and epilepsy (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The enzyme glutamate decarboxylase (GAD) is responsible for the synthesis of the essential neurotransmitter gamma-aminobutyric acid (GABA) from L-glutamic acid (1). GAD1 (GAD67) and GAD2 (GAD65) are expressed in nervous and endocrine systems (2) and are thought to be involved in synaptic transmission (3) and insulin secretion (4), respectively. Autoantibodies against GAD2 may serve as markers for type I diabetes (5). Many individuals suffering from an adult onset disorder known as Stiff Person Syndrome (SPS) also express autoantibodies to GAD2 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents. Control of autophagy was largely discovered in yeast and involves proteins encoded by a set of autophagy-related genes (Atg) (1). Formation of autophagic vesicles requires a pair of essential ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (Atg8-PE), which are widely conserved in eukaryotes (2). Numerous mammalian counterparts to yeast Atg proteins have been described, including three Atg8 proteins (GATE-16, GABARAP, and LC3) and four Atg4 homologs (Atg4A/autophagin-2, Atg4B/autophagin-1, Atg4C/autophagin-3, and Atg4D/autophagin-4) (3-5). The cysteine protease Atg4 is pivotal to autophagosome membrane generation and regulation. Atg4 primes the Atg8 homolog for lipidation by cleaving its carboxy terminus and exposing its glycine residue for E1-like enzyme Atg7. The Atg8 homolog is transferred to the E2-like enzyme Atg3 before forming the Atg8-PE conjugate. During later stages of autophagy, Atg4 can reverse this lipidation event by cleaving PE, thereby recycling the Atg8 homolog (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).FoxP3 is crucial for the development of T cells with regulatory properties (Treg) (6). Mutations in FoxP3 are associated with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX) (7), while overexpression in mice causes severe immunodeficiency (8). Research studies have shown that FoxP3 functions as a tumor suppressor in several types of cancer (9-11).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Synapsins, a group of at least five related members (synapsins Ia, Ib, IIa, IIb, and IIIa), are abundant brain proteins essential for regulating neurotransmitter release (1,2). All synapsins contain a short amino-terminal domain that is highly conserved and phosphorylated by PKA or CaM kinase I (1). Phosphorylation of the synapsin amino-terminal domain at Ser9 inhibits its binding to phospholipids and dissociates synapsins from synaptic vesicles (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Human alcohol dehydrogenase (ADH) genes are grouped into five classes, with three distinct class I ADH genes (ADH1A, ADH1B and ADH1C) and ADH4, ADH5, ADH7 and ADH6 belonging to classes II, III, IV, and V, respectively. ADH is a zinc-containing, dimeric enzyme that catalyzes the conversion of cytosolic alcohol to acetaldehyde in the liver with the coenzyme NAD (1). ADH1A is monomorphic and is the predominant fetal and neonatal liver ADH enzyme. In contrast, polymorphic ADH1B and ADH1C enzymes are predominant in adult livers (2). Polymorphisms in the human class I ADH genes result in functionally variable ADH enzymes; evidence suggests that specific variants may provide protection from the risk of alcoholism (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: CTD small phosphatase-like protein 2 (CTDSPL2, HSPC129) is a putative RNA-polymerase II carboxy-terminal domain (CTD) phosphatase (1) that belongs to a small subfamily of CTD phosphatases (2). The CTD of RNA polymerase II contains multiple Y-S-P-T-S-P-S repeats that are phosphorylated during the transcription cycle (3,4). In general, CTD phosphatases regulate the reversible CTD phosphorylation state of RNA-polymerase II at several stages of RNA synthesis and during post-transcriptional modification (4-6). CTDSPL2 has several structural and functional similarities to other CTD phosphatases, including FCP1, SCP1, DULLARD, and UBLCP1 (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The process of SUMO conjugation to target proteins is similar to the molecular chain of events observed with ubiquitin (1). SUMO is conjugated to target proteins through the coordinated action of the cellular SUMO conjugation machinery consisting of E1, E2, and E3 enzymes (2). The canonical SUMO E1 activating enzyme is a heterodimer consisting of SAE1 (AOS1) and UBA2 (SAE2) subunits. Mature SUMO is activated by E1 in an ATP-dependent reaction that generates adenylated SUMO, which functions as a high-energy intermediate in the formation of a thioester linkage between SUMO and Cys173 of UBA2 (3,4). SUMO is subsequently transferred from UBA2 to the SUMO E2 conjugating enzyme, UBC9 (5). Recent evidence suggests that redox regulation of UBA2 serves as a physiologic mechanism to modulate the cellular level of sumoylated target proteins (6).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin)

Background: Halogenated nucleotides such as the pyrimidine analog bromodeoxyuridine (BrdU) are useful for labeling nascent DNA in living cells and tissues. BrdU becomes incorporated into replicating DNA in place of thymidine and subsequent immunodetection of BrdU using specific monoclonal antibodies allows labeling of cells in S phase of the cell cycle. After pulse-labeling cells or tissues with bromodeoxyuridine, BrdU (Bu20a) Mouse mAb can be used to detect BrdU incorporated into single stranded DNA. Please see our detailed protocol for information regarding the labeling procedure and denaturation of double stranded DNA for various immunodetection applications (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding protein (PEBP) family that associates with Raf-1 and the MEK and MAP kinases (1). RKIP has been shown to form a complex with Raf-1, MEK, and Erk (2). Although MEK and Erk can simultaneously bind RKIP, the association between Raf-1 and RKIP and that of RKIP and MEK are mutually exclusive. Thus, RKIP competitively disrupts the Raf-1-MEK complex and effectively terminates signal transmission from Raf-1 to MAP kinases (2). The inhibitory effect of RKIP on MAP kinase signaling is eliminated by PKC phosphorylation of RKIP at Ser153 (3). PKC phosphorylation on Ser153 also promotes the association of RKIP with GRK2, which prevents GRK2-dependent internalization of GPCR (4). RKIP also interacts with modules of the NF-κB pathway, including NF-κB-inducing kinase (NIK), TAK1, IKKα and IKKβ (5). These interactions antagonize cytokine-induced activation of the NF-κB pathway (5). Restoration of RKIP expression is associated with the inhibition of prostate cancer metastasis, implying that RKIP may be a potential clinical target as a suppressor of tumor metastasis through inhibition of vascular invasion (6).