Microsize antibodies for $99 | Learn More >>

Product listing: La Antigen (D19B3) Rabbit mAb, UniProt ID P05455 #5034 to Phospho-p63 (Ser160/162) Antibody, UniProt ID Q9H3D4 #4981

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: La antigen is recognized by antibodies in patients with autoimmune disorders such as systemic lupus erythematosus and Sjögren's syndrome (1). La antigen binds to the 5'-noncoding region of poliovirus RNA and is an IRES trans-acting factor (1,2). Depletion of La antigen reduces the function of poliovirus IRES in vivo (3). La antigen, when phosphorylated at Ser366, has been shown to associate with nuclear precursor tRNAs and facilitate their processing (4). The nonphosphorylated La antigen interacts with the mRNAs that have 5'-terminal oligopyrimidine (5'TOP) motifs to control protein synthesis (4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Secretory proteins translocate into the endoplasmic reticulum (ER) during synthesis where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) has two thioredoxin homology domains and catalyzes the formation and isomerization of these disulfide bonds (2). Other ER resident proteins that possess thioredoxin homology domains, including ER stress protein 72 (ERp72), constitute the PDI family (3,4). ERp72 contains three thioredoxin homology domains (3) and plays a role in the formation and isomerization of disulfide bonds (3,4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: MEF2C is a member of the MEF2 (myocyte enhancer factor 2) family of transcription factors. In mammals, there are four MEF2C-related genes (MEF2A, MEF2B, MEF2C and MEF2D) that encode proteins that exhibit significant amino acid sequence similarity within their DNA binding domains and, to a lesser extent, throughout the rest of the proteins (1). The MEF2 family members were originally described as muscle-specific DNA binding proteins that recognize MEF2 motifs found within the promoters of many muscle-specific genes (2,3). Recently, several groups have reported MEF2 binding activity and MEF2 proteins in a wide variety of cell types where these proteins appear to play an important role in growth factor- and stress-induced early gene responses (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Mixed-lineage kinases (MLKs) belong to the mitogen activated kinase kinase kinase (MAPKKK) family of dual-specificity protein kinases. While not particularly well conserved at the sequence level, MLK1, 2 and 3 share a conserved domain structure consisting of a catalytic core and two isoleucine/leucine zipper motifs among other protein-protein binding domains (1). MLK1 preferentially stimulates the JNK (c-Jun amino-terminal kinase) pathway in response to agonists and stress (2). Although multiple phosphorylation events are required for full activation of MLK1, two autophosphorylation sites within the activation loop (Ser308 and Thr312) appear to be the predominant activation residues (3). In neuronal cells, MLK1 appears to function downstream of the small G-proteins Rac1 and Cdc42 and upstream of MKK4 and MKK7 to promote apoptosis (2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nonmuscle myosin is an actin-based motor protein essential to cell motility, cell division, migration, adhesion, and polarity. The holoenzyme consists of two identical heavy chains and two sets of light chains. The light chains (MLCs) regulate myosin II activity and stability. The heavy chains (NMHCs) are encoded by three genes, MYH9, MYH10, and MYH14, which generate three different nonmuscle myosin II isoforms, IIa, IIb, and IIc, respectively (reviewed in 1). While all three isoforms perform the same enzymatic tasks, binding to and contracting actin filaments coupled to ATP hydrolysis, their cellular functions do not appear to be redundant and they have different subcellular distributions (2-5). The carboxy-terminal tail domain of myosin II is important in isoform-specific subcellular localization (6). Research studies have shown that phosphorylation of myosin IIa at Ser1943 contributes to the regulation of breast cancer cell migration (7).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$293
100 µl
REACTIVITY
Human

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, six Set1-related proteins exist in mammals: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30. These subunits are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6). Like yeast Set1, all six Set1-related mammalian proteins methylate histone H3 at Lys4 (2-6). MLL translocations are found in a large number of hematological malignancies, suggesting that Set1/COMPASS histone methyltransferase complexes play a critical role in leukemogenesis (6).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP® Rabbit mAb #5364.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions and tested using COS cells transfected with HA-tagged protein.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$305
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The unconjugated GAPDH (14C10) Rabbit mAb #2118 reacts with human, mouse, rat and monkey GAPDH. CST expects that GAPDH (14C10) Rabbit mAb (Biotinylated) will also recognize GAPDH in these species.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the phosphorylation of glyceraldehyde-3-phosphate during glycolysis. Though differentially expressed from tissue to tissue (1), GAPDH is thought to be a constitutively expressed housekeeping protein. For this reason, GAPDH mRNA and protein levels are often measured as controls in experiments quantifying specific changes in expression of other targets. Recent work has elucidated roles for GAPDH in apoptosis (2), gene expression (3), and nuclear transport (4). GAPDH may also play a role in neurodegenerative pathologies such as Huntington and Alzheimer's diseases (4,5).

$305
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The unconjugated p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb #4695 reacts with human, mouse, rat, monkey, mink, pig, Saccharomyces cerevisiae, Drosophila melanogaster, hamster, bovine and zebrafish p44/42 MAPK protein. CST expects that p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb (Biotinylated) will also recognize MAPK in these species.
APPLICATIONS
REACTIVITY
Bovine, C. elegans, D. melanogaster, Dog, Hamster, Human, Mink, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Immunoprecipitation, Western Blotting

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

$364
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The unconjugated Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060 reacts with human, mouse, rat, Drosophila melanogaster, hamster, bovine and zebrafish phospho-Akt (Ser473) protein. CST expects that Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Biotinylated) will also recognize phospho-Akt (Ser473) in these species.
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Hamster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: JunD, along with closely related family members c-Jun and JunB, is a transcription factor that can activate or repress a wide array of target genes (1,2). JunD transcriptional activity is modulated by phosphorylation in response to cellular stress via the c-Jun N-terminal Kinase (JNK)/Stress-Activated Protein Kinase (SAPK) family of protein kinases (3,4). JunD activity can also be modulated by the MAPK pathway in response to growth factors. Its transcriptional capacity is further regulated by other binding partners that affect JunD expression levels and DNA binding capacity (reviewed in 5). All Jun proteins are capable of forming dimers with Fos-, ATF- and CREB-family transcription factors to form the AP-1 complex that differentially regulates a variety of target genes involved in cellular growth, proliferation, differentiation, and apoptosis (reviewed in 5 and 6). Unlike JunB and c-Jun, which share a high degree of homology (>95%), JunD is less conserved (~75%) at the amino acid level (1). Growing evidence suggests that JunD protein expression is regulated independently of other family members (reviewed in 5). It is thought that JunD may have functional significance beyond the typical Jun-family milieu. This is exemplified by the fact that JunD knockout mice are viable, bearing specific defects in cardiomyocyte function and bone growth, whereas their c-Jun counterparts develop significant, multi-organ defects during embryogenesis and die at E12.5 (7-10). JunD appears to specifically regulate genes involved in antioxidant response and hydrogen peroxide production and plays an important role in angiogenesis via its ability to exert transcriptional control over the VEGF gene (11). Furthermore, JunD appears to play an important roll in metabolism via modulation of IGF-I signaling pathways (12). Recent studies have shown that JunD regulates GADD45 α and γ expression in prostate cancer cells and that inhibition of JunD promotes apoptosis. Thus, JunD may be a viable therapeutic target for the treatment of prostate cancer (13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The NFAT (nuclear factor of activated T cells) family of proteins consists of NFAT1 (NFATc2 or NFATp), NFAT2 (NFATc1 or NFATc), NFAT3 (NFATc4), and NFAT4 (NFATc3 or NFATx). All members of this family are transcription factors with a Rel homology domain and regulate gene transcription in concert with AP-1 (Jun/Fos) to orchestrate an effective immune response (1,2). NFAT proteins are predominantly expressed in cells of the immune system, but are also expressed in skeletal muscle, keratinocytes, and adipocytes, regulating cell differentiation programs in these cells (3). In resting cells, NFAT proteins are heavily phosphorylated and localized in the cytoplasm. Increased intracellular calcium concentrations activate the calcium/calmodulin-dependent serine phosphatase calcineurin, which dephosphorylates NFAT proteins, resulting in their subsequent translocation to the nucleus (2). Termination of NFAT signaling occurs upon declining calcium concentrations and phosphorylation of NFAT by kinases such as GSK-3 or CK1 (3,4). Cyclosporin A and FK506 are immunosuppressive drugs that inhibit calcineurin and thus retain NFAT proteins in the cytoplasm (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, and then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). Combinatorial interactions of different E2 and E3 proteins result in substrate specificity (4). Recent data suggest that activated E2 associates transiently with E3, and that the dissociation is a critical step for ubiqitination (5). UBC3, the mammalian orthologue of yeast Cdc34, and UBC3B, a UBC3 family member, are E2 ubiquitin-carrier proteins. These proteins contain a conserved core domain containing a cysteine residue, which forms the thioester bond with ubiquitin (6). UBC3 in concert with the SCFSkp2 (Skp1, Cullin and F-box protein/Skp2) complex mediates cell cycle progression from G1 to S phase by targeting the CDK inhibitor p27 for proteolysis (7). UBC3B in concert with the SCFb-Trcp (Skp1, Cullin and F-box protein/b-Trcp) complex mediates degradation of b-catenin (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). Combinatorial interactions of different E2 and E3 proteins result in substrate specificity (4). Recent data suggest that activated E2 associates transiently with E3, and that the dissociation is a critical step for ubiqitination (5). Cullin homolog 1 (CUL1), the mammalian homolog of Cdc53 from yeast, is a molecular scaffold of the SCF (Skp1/CUL1/F-box) E3 ubiquitin ligase protein complex. Thus, CUL1 and its family members function in ubiquitin dependent proteolysis (6). In particular, CUL1 has been shown to mediate ubiquitin dependent degradation of p21 Waf1/Cip1, cyclin D and IkappaB-alpha (7,8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SMG-1 is a member of the phosphoinositide 3-kinase-related kinase (PIKK) family, which includes ATM, ATR, mTOR, DNA-PKcs, and TRRAP (1,2). Activated by DNA damage, SMG-1 has been shown to phosphorylate p53 and hUpf1 (SMG-2) (1-4). hUpf1 is a subunit of the surveillance complex that allows degradation of messenger RNA species containing premature termination codons (PTCs). This process, known as nonsense-mediated mRNA decay (NMD), prevents the translation of truncated forms of proteins that may result in gain of function or dominant negative species. NMD occurs under normal cellular conditions as well as in response to damage (5,6). SMG-1 has also been shown to affect cell death receptor signaling and to protect cells from extrinsically induced apoptotic cell death (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Poly(A)-binding protein 1 (PABP1) associates with the 3' poly(A) tail of mRNA and also eIF4F (1,2). eIF4F is a complex whose functions include the recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction between eIF4G and the poly(A) binding protein (PABP). PABP1 has been shown to have multiple functions including translation initiation, mRNA stabilization, and mRNA turnover (3,4). Phosphorylation of PABP has been shown to enhance RNA binding in eukaryotes, and PABP1 has been shown to shuttle between the nucleus and cytoplasm (5,6). PABP1 is methylated on Arg455 and Arg460 by the CARM1 protein methyltransferase (7,8); however, the function of this methylation has yet to be determined.

$122
20 µl
$307
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: NALP1 (DEFCAP/NAC/CARD7) is an NLR (Nod-like receptor) family member that has been implicated in the regulation of apoptosis and inflammatory responses (1-5). Structurally, NALP contains an amino-terminal PYRIN domain, followed by a nucleotide-binding site (NBS), a leucine rich repeat region (LRR), and a carboxy-terminal CARD domain. NALP1 and interacts strongly with caspase-2 and weakly with caspase-9, and induces apoptosis when overexpressed (3). Similar to a related Ced-4 family member Apaf-1, it was also shown to be involved in cytochrome c-dependent caspase activation (2). It has also been shown to be part of the "inflammasome" comprised of caspase-1, caspase-5, and Pycard/ASC, which is critical in the processing of pro-inflammatory cytokines like IL-1β (6). Two major isoforms were identified for NALP1, which differ in a 44 amino acid region within the LRR (3). In addition, like NALP3, a short NALP1 isoform lacking the LRR (NALP1s) likely exists (7). Polymorphisms in NALP1 have been associated with autoimmune disease (8) and susceptibility to toxins (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Catenin δ-1 (p120 catenin) has an amino-terminal coiled-coil domain followed by a regulatory domain containing multiple phosphorylation sites and a central Armadillo repeat domain of ten linked 42-amino acid repeats. The carboxy-terminal tail has no known function (1). Catenin δ-1 fulfills critical roles in the regulation of cell-cell adhesion as it regulates E-cadherin turnover at the cell surface to determine the level of E-cadherin available for cell-cell adhesion (2). Catenin δ-1 has both positive and negative effects on cadherin-mediated adhesion (3). Actin dynamics are also regulated by catenin δ-1, which modulates RhoA, Rac, and cdc42 proteins (1). Analogous to β-catenin, catenin δ-1 translocates to the nucleus, although its role at this location is unclear. Many studies show that catenin δ-1 is expressed irregularly or is absent in various types of tumor cells, suggesting that catenin δ-1 may function as a tumor suppressor (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Tec kinase belongs to a structurally related subfamily of protein tyrosine kinases (PTKs) that includes Btk, Itk (also known as Emt or Tsk), Bmx, and Txk (or Rlk) (1). With the exception of Txk, the members of this subfamily possess a long amino-terminal region consisting of a pleckstrin homology (PH) domain and a Tec homology (TH) domain . Because PH domains bind phosphoinositides with high affinity, the Tec family kinases have been proposed to act downstream of phosphatidylinositol 3-kinase (PI3-kinase) in signaling pathways. Binding of the PH domain with phosphoinositides is probably required for targeting of Tec family kinases to the cell membrane (2). Tec kinase is activated in response to many upstream signaling events including antigen receptor, RTK, GPCR, and integrin stimulation (3,4). Activated Tec kinase directly phosphorylates substrates such as PLC-gamma 2 and BRDG1 docking protein (5) and mediates downstream signaling.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The mitochondrial antiviral signaling protein (MAVS, VISA) contributes to innate immunity by triggering IRF-3 and NF-κB activation in response to viral infection, leading to the production of IFN-β (1). The MAVS protein contains an N-terminal CARD domain and a C-terminal mitochondrial transmembrane domain. The MAVS adaptor protein plays a critical and specific role in viral defenses (2). MAVS acts downstream of the RIG-I RNA helicase and viral RNA sensor, leading to the recruitment of IKKε, TRIF and TRAF6 (3,4). Some viruses have evolved strategies to circumvent these innate defenses by using proteases that cleave MAVS to prevent its mitochondrial localization (5,6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). In addition to p53, mammalian cells contain two p53 family members, p63 and p73, which are similar to p53 in both structure and function (2). While p63 can induce p53-responsive genes and apoptosis, mutation of p63 rarely results in tumors (2). Research investigators frequently observe amplification of the p63 gene in squamous cell carcinomas of the lung, head and neck (2,3). The p63 gene contains an alternative transcription initiation site that yields a truncated ΔNp63 lacking the transactivation domain, and alternative splicing at the carboxy-terminus yields the α, β, and γ isoforms (3,4).