Microsize antibodies for $99 | Learn More >>

Product listing: CD3ε (CD3-12) Rat mAb, UniProt ID P07766 #4443 to FoxP1 (D35D10) XP® Rabbit mAb, UniProt ID Q9H334 #4402

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: When T cells encounter antigens via the T cell receptor (TCR), information about the quantity and quality of antigens is relayed to the intracellular signal transduction machinery (1). This activation process depends mainly on CD3 (Cluster of Differentiation 3), a multiunit protein complex that directly associates with the TCR. CD3 is composed of four polypeptides: ζ, γ, ε and δ. Each of these polypeptides contains at least one immunoreceptor tyrosine-based activation motif (ITAM) (2). Engagement of TCR complex with foreign antigens induces tyrosine phosphorylation in the ITAM motifs and phosphorylated ITAMs function as docking sites for signaling molecules such as ZAP-70 and p85 subunit of PI-3 kinase (3,4). TCR ligation also induces a conformational change in CD3ε, such that a proline region is exposed and then associates with the adaptor protein Nck (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Stat2 (113-kDa), originally purified from the nuclei of alpha-interferon-treated cells, is critical to the transcriptional responses induced by type I interferons, IFN-alpha/beta (1,2). Knockout mice with a targeted disruption of Stat2 have higher susceptibility to viral infection and altered responses to type I interferons (3). Stat2 is rapidly activated by phosphorylation at Tyr690 in response to stimulation by IFN-alpha/beta via associations with receptor-bound Jak kinases (4). Unlike other Stat proteins, Stat2 does not form homodimers. Instead, activated Stat2 forms a heterodimer with Stat1 and translocates to the nucleus. There, it associates with the DNA-binding protein p48 and forms the transcriptional activator complex, interferon-stimulated gene factor 3 (ISGF3), promoting transcription from the ISRE (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CARD11/Carma1/Bimp3 belongs to the MAGUK (membrane-associated guanylate kinase) family that typically function as molecular scaffolds in the assembly of multiprotein complexes (1,2). MAGUK family members contain an SH3 domain, a PDZ domain and a GuK domain homologous to guanylate kinase. In addition, CARD11 contains an amino-terminal CARD domain (caspase recruitment domain). This domain plays an important role in forming interactions with a number of proteins containing CARD domains that are involved in regulating apoptosis and NF-κB activation. CARD11 is predominately expressed in lymphocytes (1,2) and associates with the CARD domain of Bcl10. When overexpressed, CARD11 leads to the phosphorylation of Bcl10 and activation of NF-κB (1,2). CARD11 is constitutively associated with lipid rafts and is thought to function by recruiting Bcl10 and MALT1 and triggering the phosphorylation of IKKs (3,4). Several studies using the genetic disruption of CARD11 or dominant-negative mutations have demonstrated that it plays a critical role in NF-κB activation and lymphocyte signaling (4-7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein arginine N-methyltransferase 4 (PRMT4), also known as coactivator-associated arginine methyltransferase 1 (CARM1), is a member of the protein arginine N-methyltransferase (PRMT) family of proteins, which catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (1). There are two types of PRMT proteins. While both types catalyze the formation of mono-methyl arginine, type I PRMTs (PRMT1, 3, 4 and 6) add an additional methyl group to produce asymmetric di-methyl arginine and type II PRMTs (PRMT 5 and 7) produce symmetric di-methyl arginine (1). Mono-methyl arginine, but not di-methyl arginine, can be converted to citrulline through deimination performed by enzymes such as PADI4 (2). Most of the PRMTs methylate arginine residues found within glycine-arginine rich (GAR) domains of proteins, such as RGG, RG and RXR repeats (1). However, PRMT4/CARM1 and PRMT5 instead methylate arginine residues within PGM (proline-, glycine-, methionine-rich) motifs (3). PRMT4 methylates Arg2, 17 and 26 of histone H3 and cooperates synergistically with p300/CBP and p160 coactivators to enhance transcriptional activation by nuclear receptor proteins (4). In addition, PRMT4 methylates many non-histone proteins, including transcriptional coactivators (p300/CBP, SRC-3) (5,6,7,8), splicing factors (SmB, CA150, SAP49, UIC) (3), RNA binding proteins (PABP1, Sam68, HuD, HuR) (9,10,11), and thymocyte cyclic AMP-regulated phosphoprotein (TARPP) (12), suggesting additional functions in transcriptional regulation, mRNA processing and thymocyte maturation. Methylation of the splicing factor CA150 by PRMT4 facilitates an interaction with the Tudor domain of SMN, suggesting a role for PRMT4 in spinal muscular atrophy (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TWEAK (TNFSF12/Apo-3L) is a member of the TNF superfamily of cytokines that are typically involved in immune regulation, inflammation, and apoptosis (1,2). TWEAK mRNA is expressed in a variety of tissues and cell lines, with higher levels observed in the heart, brain, skeletal muscle and within the immune system (1). Like other family members TWEAK is a type II transmembrane protein that can also be proteolytically processed to form a soluble cytokine. Soluble TWEAK is a weak inducer of apoptosis in some cell lines (1). The receptor for TWEAK, known as TWEAKR or fibroblast growth factor inducible 14 (Fn14), is a relatively small member of the TNF receptor family (3). TWEAK signaling has been associated with apoptosis, proliferation, migration, angiogenesis, and inflammation (4). Recent studies have suggested some therapeutic potential of TWEAK and its receptor signaling in regards to autoimmunity, cancer, and vascular injury (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CaMKII is an important member of the calcium/calmodulin-activated protein kinase family, functioning in neural synaptic stimulation and T cell receptor signaling (1,2). CaMKII has catalytic and regulatory domains. Ca2+/calmodulin binding to the CaMKII regulatory domain relieves autoinhibition and activates the kinase (3). The activated CaMKII further autophosphorylates at Thr286 to render the kinase constitutively active (3). The threonine phosphorylation state of CaMKII can be regulated through PP1/PKA. PP1 (protein phosphatase 1) dephosphorylates phospho-CaMKII at Thr286. PKA (protein kinase A) prevents phospho-CaMKII (Thr286) dephosphorylation through an inhibitory effect on PP1 (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: CARD11/Carma1/Bimp3 belongs to the MAGUK (membrane-associated guanylate kinase) family that typically function as molecular scaffolds in the assembly of multiprotein complexes (1,2). MAGUK family members contain an SH3 domain, a PDZ domain and a GuK domain homologous to guanylate kinase. In addition, CARD11 contains an amino-terminal CARD domain (caspase recruitment domain). This domain plays an important role in forming interactions with a number of proteins containing CARD domains that are involved in regulating apoptosis and NF-κB activation. CARD11 is predominately expressed in lymphocytes (1,2) and associates with the CARD domain of Bcl10. When overexpressed, CARD11 leads to the phosphorylation of Bcl10 and activation of NF-κB (1,2). CARD11 is constitutively associated with lipid rafts and is thought to function by recruiting Bcl10 and MALT1 and triggering the phosphorylation of IKKs (3,4). Several studies using the genetic disruption of CARD11 or dominant-negative mutations have demonstrated that it plays a critical role in NF-κB activation and lymphocyte signaling (4-7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: A-Raf, B-Raf, and c-Raf (Raf-1) are the main effectors recruited by GTP-bound Ras to activate the MEK-MAP kinase pathway (1). Activation of c-Raf is the best understood and involves phosphorylation at multiple activating sites including Ser338, Tyr341, Thr491, Ser494, Ser497, and Ser499 (2). p21-activated protein kinase (PAK) has been shown to phosphorylate c-Raf at Ser338, and the Src family phosphorylates Tyr341 to induce c-Raf activity (3,4). Ser338 of c-Raf corresponds to similar sites in A-Raf (Ser299) and B-Raf (Ser445), although this site is constitutively phosphorylated in B-Raf (5). Inhibitory 14-3-3 binding sites on c-Raf (Ser259 and Ser621) can be phosphorylated by Akt and AMPK, respectively (6,7). While A-Raf, B-Raf, and c-Raf are similar in sequence and function, differential regulation has been observed (8). Of particular interest, B-Raf contains three consensus Akt phosphorylation sites (Ser364, Ser428, and Thr439) and lacks a site equivalent to Tyr341 of c-Raf (8,9). Research studies have shown that the B-Raf mutation V600E results in elevated kinase activity and is commonly found in malignant melanoma (10). Six residues of c-Raf (Ser29, Ser43, Ser289, Ser296, Ser301, and Ser642) become hyperphosphorylated in a manner consistent with c-Raf inactivation. The hyperphosphorylation of these six sites is dependent on downstream MEK signaling and renders c-Raf unresponsive to subsequent activation events (11).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: A-Raf, B-Raf, and c-Raf (Raf-1) are the main effectors recruited by GTP-bound Ras to activate the MEK-MAP kinase pathway (1). Activation of c-Raf is the best understood and involves phosphorylation at multiple activating sites including Ser338, Tyr341, Thr491, Ser494, Ser497, and Ser499 (2). p21-activated protein kinase (PAK) has been shown to phosphorylate c-Raf at Ser338, and the Src family phosphorylates Tyr341 to induce c-Raf activity (3,4). Ser338 of c-Raf corresponds to similar sites in A-Raf (Ser299) and B-Raf (Ser445), although this site is constitutively phosphorylated in B-Raf (5). Inhibitory 14-3-3 binding sites on c-Raf (Ser259 and Ser621) can be phosphorylated by Akt and AMPK, respectively (6,7). While A-Raf, B-Raf, and c-Raf are similar in sequence and function, differential regulation has been observed (8). Of particular interest, B-Raf contains three consensus Akt phosphorylation sites (Ser364, Ser428, and Thr439) and lacks a site equivalent to Tyr341 of c-Raf (8,9). Research studies have shown that the B-Raf mutation V600E results in elevated kinase activity and is commonly found in malignant melanoma (10). Six residues of c-Raf (Ser29, Ser43, Ser289, Ser296, Ser301, and Ser642) become hyperphosphorylated in a manner consistent with c-Raf inactivation. The hyperphosphorylation of these six sites is dependent on downstream MEK signaling and renders c-Raf unresponsive to subsequent activation events (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Oct-1 (POU2F1) is a ubiquitously expressed, octamer-binding transcription factor containing a POU domain with a homeobox subdomain (1). Oct-1 has been shown to interact with several transcription factors in mediating specific gene expression, including SNAPc (2), OBF-1 (a B-cell transcriptional coactivator protein) (3), TFIIB (4), and TBP (TATA-box-binding protein) (5). Its POU DNA-binding domain allows Oct-1 the flexibility to facilitate the binding and recruitment of several tissue-specific cofactors to either positively or negatively regulate a variety of genes, exerting an important role in development (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: FIH (Factor inhibiting HIF-1, HIF asparagine hydroxylase) is a dioxygen-dependent asparaginyl hydroxylase that modifies target protein function by hydroxylating target protein asparagine residues (1-3). Hypoxia-inducible factor (HIF), a transcriptional activator involved in control of cell cycle in response to hypoxic conditions, is an important target for FIH regulation. FIH functions as an oxygen sensor that regulates HIF function by hydroxylating at Asn803 in the carboxy-terminal transactivation domain (CAD) of HIF (4,5). During normoxia, FIH uses cellular oxygen to hydroxylate HIF-1 and prevent interaction of HIF-1 with transcriptional coactivators, including the CBP/p300-interacting transactivator. Under hypoxic conditions, FIH remains inactive and does not inhibit HIF, allowing the activator to regulate transcription of genes in response to low oxygen conditions (4-6). FIH activity is regulated in through interaction with proteins, including Siah-1, which targets FIH for proteasomal degradation (7). The Cut-like homeodomain protein CDP can bind the FIH promoter region to regulate FIH expression at the transcriptional level (8). Phosphorylation of HIF at Thr796 also can prevent FIH hydroxylation on Asn803 (9). Potential FIH substrates also include proteins with ankyrin repeat domains, such as Iκ-B, Notch, and ASB4 (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The eukaryotic mRNA 3' poly(A) tail interacts with the 5' cap structure to regulate translation of mRNA transcripts (1). The eIF4G translation initiation factor associates with poly(A) binding protein (PABP) to circularize mRNA (1,2). Paip1 is a PABP interacting protein that binds eIF4A to stimulate translation (3). A second PABP binding protein, Paip2, inhibits translation by interfering with PABP function. Specifically, Paip2 reduces the affinity of PABP for poly(A) RNA and competes with Paip1 for PABP binding (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: NAC1 or nuclear accumbens-1 is a nuclear factor that belongs to the POZ/BTB (Pox virus and zinc finger/bric-a-brac tramtrack broad complex) domain family. Also known as BTBD14B, it was originally identified in a unique neuronal forebrain structure responsible for reward motivation and addictive behaviors (1,2). NAC1 recruits HDAC3 and HDAC4 to transcriptionally repress gene expression in neuronal cells (3) and specifically co-represses other POZ/BTB proteins in the central nervous system (4). NAC1 is upregulated in several tumor types, including breast, renal cell, and hepatocellular carcinoma, as well as high grade ovarian serous carcinoma, where it has long been suspected as a chemoresistance gene (5,6). The chemoresistance mechanism reportedly occurs through NAC1 negative regulation of the GADD45 pathway (7). NAC1 has also been described as part of the extended transcriptional network in pluripotent cells that involves Oct-4, Sox2, Nanog, Sall1, KLF4 and Sall4 (8).

$121
250 µl
Anti-rat IgG (H+L) was conjugated to Alexa Fluor® 647 fluorescent dye under optimal conditions and formulated at 2 mg/ml.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$121
250 µl
Anti-rat IgG (H+L) antibody was conjugated to Alexa Fluor® 555 fluorescent dye under optimal conditions and formulated at 2 mg/mL.
APPLICATIONS

Application Methods: Immunofluorescence (Immunocytochemistry)

$121
250 µl
Anti-rat IgG (H+L) antibody was conjugated to Alexa Fluor® 488 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This product has been optimized for use as a secondary antibody in immunofluorescent applications. Cell Signaling Technology’s strict quality control procedures assure that each conjugate provides optimal specificity and fluorescence.
APPLICATIONS

Application Methods: Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-rabbit IgG (H+L) F(ab')2 Fragment was conjugated to Alexa Fluor® 647 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-Rabbit IgG (H+L) F(ab')2 Fragment was conjugated to Alexa Fluor® 555 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-Rabbit IgG (H+L) F(ab')2 Fragment was conjugated to Alexa Fluor® 488 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-Mouse IgG (H+L) F(ab')2 Fragment was conjugated to Alexa Fluor® 647 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-Mouse IgG (H+L) F(ab')2 Fragment was conjugated to Alexa Fluor® 555 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-Mouse IgG (H+L) F(ab')2 Fragment antibody was conjugated to Alexa Fluor® 488 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$307
100 µl
$719
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The receptor for TWEAK, fibroblast growth factor-inducible 14 (Fn14), is a member of the TNF superfamily of receptors thought to be involved in cell growth, adhesion and migration (1). Its expression is regulated by a number of different growth factors (1,2). Elevated expression is also seen in some cancers including hepatocellular carcinomas (3), glioblastomas (4), and pancreatic cancer (5). The receptor contains a binding site for members of the TNFR-associated factor (TRAF) family that promotes the activation of NF-κB (1,6). Recent studies have suggeted some therapeutic potential of TWEAK and its receptor signaling in regards to autoimmunity and cancer treatment (7-9).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).