Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Product listing: Integrin α5 (D7B7G) Rabbit mAb, UniProt ID P08648 #98204 to HEXIM1 (D5Y5K) Rabbit mAb (PE Conjugate), UniProt ID O94992 #97099

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2).Integrin α5/β1 is involved in multiple biological processes including embryonic development, angiogenesis and tumor metastasis (4,5). By interaction with its fibronectin ligand, α5/β1 transduces signals that regulate cell adhesion, migration, matrix assembly and cytoskeletal organization (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin-cyanine 7 (PE-Cy®7) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (197G2) Rabbit mAb #4377.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mink, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

The Necroptosis Antibody Sampler Kit provides an economical means of detecting total and phosphorylated proteins associated with necroptosis. The kit includes enough antibody to perform two western blots with each primary antibody.

Background: Necroptosis, a regulated pathway for necrotic cell death, is triggered by a number of inflammatory signals, including cytokines in the tumor necrosis factor (TNF) family, pathogen sensors such as toll-like receptors (TLRs), ischemic injury, and neurodegenerative diseases (1-3). The process is negatively regulated by caspases and is initiated through a complex containing the RIP and RIP3 kinases, typically referred to as the necrosome. Necroptosis is inhibited by a small molecule inhibitor of RIP, necrostatin-1 (Nec-1) (4). RIP is phosphorylated at several sites within the kinase domain that are sensitive to Nec-1, including Ser14, Ser15, Ser161, and Ser166 (5). During necroptosis, RIP3 is phosphorylated at Ser227, leading to recruitment and phosphorylation of MLKL at Thr357 and Ser358 (6). Phosphorylation of MLKL results in its oligomerization and translocation to the plasma membrane, where it effects membrane integrity (7-10).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated RUNX2 (D1L7F) Rabbit mAb #12556.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Runt-related transcription factor 2 (RUNX2) is a member of the RUNX family of transcription factors. It is involved in osteoblast differentiation and skeletal morphogenesis. RUNX2 regulates the transcription of various genes, including osteopontin, bone sialoprotein, and osteocalcin, via binding to the core site of the enhancers or promoters (1-3). RUNX2 is crucial for the maturation of osteoblasts and both intramembranous and endochondral ossification. Mutations in the corresponding RUNX2 gene have been associated with the bone development disorder cleidocranial dysplasia (CCD) (4-6). RUNX2 is also abnormally expressed in various human cancers including prostate cancer and breast cancer. It plays an important role in migration, invasion, and bone metastasis of prostate and breast cancer cells (7-10).

The Phospho-Jak Family Antibody Sampler Kit provides an economical means of detecting the activation of Jak family members using phospho-specific and control antibodies. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phosphotyrosine-binding domains.Activation of Jak kinases upon cytokine receptor binding is associated with tyrosine phosphorylation within their activation loops, including Tyr1034/1035 of Jak1, Tyr1007/1008 of Jak2, Tyr980/981 of Jak3, and Tyr1054/1055 of Tyk2. Many studies have indicated that various cytokine receptors have clear preferences that utilize distinct Jak family members. Aberrant regulation of Jak signaling is associated with a number of diseases, including myeloproliferative neoplasms, leukemia, and inflammatory disease (6).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cas9 (7A9-3A3) Mouse mAb #14697.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: The CRISPR associated protein 9 (Cas9) is an RNA-guided DNA nuclease and part of the Streptococcus pyogenes CRISPR antiviral immunity system that provides adaptive immunity against extra chromosomal genetic material (1). The CRISPR antiviral mechanism of action involves three steps: (i), acquisition of foreign DNA by host bacterium; (ii), synthesis and maturation of CRISPR RNA (crRNA) followed by the formation of RNA-Cas nuclease protein complexes; and (iii), target interference through recognition of foreign DNA by the complex and its cleavage by Cas nuclease activity (2). The type II CRISPR/Cas antiviral immunity system provides a powerful tool for precise genome editing and has potential for specific gene regulation and therapeutic applications (3). The Cas9 protein and a guide RNA consisting of a fusion between a crRNA and a trans-activating crRNA (tracrRNA) must be introduced or expressed in a cell. A 20-nucleotide sequence at the 5' end of the guide RNA directs Cas9 to a specific DNA target site. As a result, Cas9 can be "programmed" to cut various DNA sites both in vitro and in cells and organisms. CRISPR/Cas9 genome editing tools have been used in many organisms, including mouse and human cells (4,5). Research studies demonstrate that CRISPR can be used to generate mutant alleles or reporter genes in rodents and primate embryonic stem cells (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: The stromal cell derived factor 1 (SDF1/CXCL12) is a small, pro-inflammatory chemoattractant cytokine that regulates leukocyte trafficking through interactions with its cognate 7-transmembrane G protein-coupled receptors (1). The SDF1/CXCL12 receptor, CXCR4, also serves as a coreceptor for the entry of human immunodeficiency virus into target cells (2). SDF1/CXCL12 may regulate homing and maintenance of CXCR4-expressing stem or progenitor cells, including embryonic and many somatic stem cells (3,4). Many cancer cells express CXCR4, suggesting that SDF1/CXCL12 plays a role in cancer metastasis (5,6). Alternative splicing and differential processing during maturation produce a pair of SDF1/CXCL12 isoforms (SDF1/CXCL12α and SDF1/CXCL12β) that have different properties and biological activities (7). Additional isoforms of SDF1/CXCL12 have been reported (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: IGFBP7 (also known as Mac25, TAF, or IGFBP-rP1) belongs to the IGFBP superfamily, which plays an integral role in regulating insulin-like growth factor (IGF) actions in a wide variety of cell types. There are six known high-affinity IGF binding family members (IGFBP1-6), and ten low-affinity IGF binding members. These family members are structurally related, but encoded by distinct genes (1,2). IGFBP7 is a low-affinity IGF binding protein (1). The protein functions through its binding to secreted growth factors including IGF1, insulin, and activin (3,4). IGFBP7 levels have been related to cancer development and tissue injury. Loss of expression of IGFBP7 has been associated with poor survival in multiple cancer types (5,6) and with tumor chemotherapy resistance (7,8). IGFBP7 also has been identified as a cell cycle arrest biomarker for human acute kidney injury (AKI) and serves as a prognostic indicator for early stage AKI development (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Retinoic acid-induced protein 2 (RAI2) is a 530 amino acid protein, encoded by the RAI2 gene on XP22.3 (1). RAI2 contains a central, proline-rich domain that is hypothesized to play a role in protein-protein interactions, and is expressed in a variety of embryonic and adult tissues (2). Beyond that, little is known about the biological functions of RAI2. Notably, a 2015 research study reported that suppressing RAI2 led to increased hematogenous dissemination of breast cancer cells to bone marrow, suggesting that RAI2 may function to negatively regulate tumor metastasis (3).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Syk (D3Z1E) XP® Rabbit mAb #13198.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Syk is a protein tyrosine kinase that plays an important role in intracellular signal transduction in hematopoietic cells (1-3). Syk interacts with immunoreceptor tyrosine-based activation motifs (ITAMs) located in the cytoplasmic domains of immune receptors (4). It couples the activated immunoreceptors to downstream signaling events that mediate diverse cellular responses, including proliferation, differentiation, and phagocytosis (4). There is also evidence of a role for Syk in nonimmune cells and investigators have indicated that Syk is a potential tumor suppressor in human breast carcinomas (5). Tyr323 is a negative regulatory phosphorylation site within the SH2-kinase linker region in Syk. Phosphorylation at Tyr323 provides a direct binding site for the TKB domain of Cbl (6,7). Tyr352 of Syk is involved in the association of PLCγ1 (8). Tyr525 and Tyr526 are located in the activation loop of the Syk kinase domain; phosphorylation at Tyr525/526 of human Syk (equivalent to Tyr519/520 of mouse Syk) is essential for Syk function (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor that is most widely known for its roles in melanocyte, ophthalmic, and osteoclast development (1-3). In humans, MITF can function as a melanoma oncogene (4) and mutations in the corresponding MITF gene are associated with Waardenburg syndrome type 2, an auditory-pigmentary syndrome characterized by developmental defects in cells derived from neural crest (5). At least 12 isoforms of MITF have been identified, which exhibit differential patterns of expression among cell and tissue types (6).

The DNA Cytosine Modification Antibody Sampler Kit provides an economical means of detecting the levels of cytosine modifications in DNA by dot blot using antibodies against 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine.

Background: Methylation of DNA at cytosine residues is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting, and mammalian development (1,2). 5-methylcytosine is a repressive epigenetic mark established de novo by two enzymes, DNMT3a and DNMT3b, and is maintained by DNMT1 (3, 4). 5-methylcytosine was originally thought to be passively depleted during DNA replication. However, subsequent studies have shown that Ten-Eleven Translocation (TET) proteins TET1, TET2, and TET3 can catalyze the oxidation of methylated cytosine to 5-hydroxymethylcytosine (5-hmC) (5). Additionally, TET proteins can further oxidize 5-hmC to form 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of which are excised by thymine-DNA glycosylase (TDG), effectively linking cytosine oxidation to the base excision repair pathway and supporting active cytosine demethylation (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Contactin-associated protein 1 (Caspr) is a membrane protein that is an essential component of the paranodal junctions in the peripheral and central nervous systems (PNS and CNS, respectively). Caspr is part of the Neurexin family of proteins and is also known as Neurexin IV, Paranodin, and Cntnap1. Caspr forms a complex, via its extracellular domain, with contactin at paranodal junctions of the axon (1, 2). Paranodal junctions are specialized junctions in the axon that are formed between the axolemma and the paranodal loops of myelinating glia. Paranodal structures are critical for salutatory conduction in the PNS and CNS. In the absence of Caspr, Caspr knockout mice exhibit mislocalization of other paranodal junction proteins, including contactin and neurofascin (3). Knockout mice also exhibit reduced nerve conduction velocities, as well as behavior defects consistent with abnormal nerve conduction. Therefore, Caspr is a critical component of a protein complex that is likely central to paranodal junction formation and maintenance.

$193
500 µl
This Cell Signaling Technology antibody is conjugated to PerCP under optimal conditions and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS

Application Methods: Flow Cytometry

Background: Isotype control antibodies are used to estimate the nonspecific binding of target primary antibodies due to Fc receptor binding or other protein-protein interactions. An isotype control antibody should have the same immunoglobulin type and be used at the same concentration as the test antibody.

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: CXCR4 is a chemokine receptor that belongs to the G protein-coupled receptor family. It is activated by a small cytokine, CXCL12, also known as stromal cell derived factor 1 (SDF-1) (1). The main function of CXCR4 is the mediation of the homing of progenitor cells in the bone marrow and their recruitment to sites of injury (2). More recently, CXCR4 has been studied, as a potential therapeutic target, in the context of autoimmune diseases (3) as well as cancer, as the receptor is involved in the regulation of migration, proliferation, and survival of cancer cells (4).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® enables researchers to isolate, identify and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® services, please visit www.cellsignal.com/support.
$269
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TSLP (thymic stromal lymphopoietin) is a cytokine produced by epithelial cells at barrier surfaces and granulocytes (1). TSLP acts on dendritic cells, lymphocytes, and granulocytes by binding to a heterodimer composed of TSLPR (TSLP receptor) and IL-7Rα (2-5). Constitutive expression of TSLP at barrier surfaces contributes to homeostasis by promoting generation of noninflammatory dendritic cells (6). TSLP promotes the differentiation of Th2 cells and type 2 immune responses both in response to helminth infection and in the context of atopic diseases including asthma and atopic dermatitis (7-13).

$269
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: IHC-Leica® Bond™, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: CD11c (integrin αX, ITGAX) is a transmembrane glycoprotein that forms an α/β heterodimer with CD18 (integrin β2), which interacts with a variety of extracellular matrix molecules and cell surface proteins (1). CD11c is primarily used as a dendritic cell marker. Dendritic cells can be classified into two major types: CD11c+ conventional dendritic cells that specialize in antigen presentation, and CD11c- plasmacytoid dendritic cells that specialize in type I interferon production (2, 3). CD11c expression has also been observed on activated NK cells, subsets of B cells, monocytes, granulocytes, and some B cell malignancies including hairy cell leukemia (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ABHD6 (α/β-Hydrolase domain-containing 6) is a monoacylglycerol lipase, ubiquitously expressed with the highest expression in brown adipose tissue, small intestine, and brain (1). A high-fat diet upregulates ABHD6 mRNA expression in small intestine and liver, and ABHD6 knockdown protects against high-fat diet-induced obesity, hepatic steatosis, and systemic insulin resistance (2). In addition, it has been shown that ABHD6 is a negative modulator of glucose-stimulated insulin secretion (3). In the central nervous system, ABHD6 is expressed postsynptically and degrades the endocannabinoid 2-arachidonoylglycerol (2-AG), an endogenous activator of cannabinoid receptors (4,5). Inhibitors of α/β-hydrolase domain 6 (ABHD6) have been actively pursued as a promising approach to treat inflammation, metabolic disorders, and epilepsy (2,6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Golgi-associated protein golgin A1 (GOLGA1, golgin-97) was first isolated as a Golgi complex autoantigen associated with the autoimmune disorder Sjogren's syndrome (1). The golgin-97 protein contains a carboxy-terminal GRIP domain and is a commonly used trans-Golgi network (TGN) marker. All four known mammalian GRIP domain-containing proteins (golgin-97, golgin-245, GCC88 and GCC185) are found in the TGN, share extensive alpha-helical structure, and form homodimers (2). While all four golgin proteins localize to the TGN, they exhibit different membrane-binding abilities and are found in distinct TGN regions (3). Golgin-97 and golgin-245 are targeted to the trans-Golgi network through an interaction between their GRIP domains and the Arl1 protein switch II region (4). Overexpression studies and siRNA assays with GRIP domain-containing proteins suggest that these proteins help to maintain trans-Golgi network integrity and function by controlling localization of TGN resident proteins (5). By using a Shiga toxin B fragment (STxB)-based in vitro transport assay and an E-cadherin transport model system, golgin-97 and its effector Arl1-GTP were shown to play a role in trans-Golgi endosomal trafficking (6,7). Research studies also suggest that golgin-97 may play a role in poxvirus morphogenesis and maturation (8,9).

$285
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to violetFluor™ 450 and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD11c (integrin αX, ITGAX) is a transmembrane glycoprotein that forms an α/β heterodimer with CD18 (integrin β2), which interacts with a variety of extracellular matrix molecules and cell surface proteins (1). CD11c is primarily used as a dendritic cell marker. Dendritic cells can be classified into two major types: CD11c+ conventional dendritic cells that specialize in antigen presentation, and CD11c- plasmacytoid dendritic cells that specialize in type I interferon production (2, 3). CD11c expression has also been observed on activated NK cells, subsets of B cells, monocytes, granulocytes, and some B cell malignancies including hairy cell leukemia (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Western Blotting

Background: The type I interferon (IFN) family includes IFN-β1 and IFN-α1 through IFN-α13 in humans and IFN-α1 through IFN-α14 in mice. Type I IFN is produced following detection of pathogen-associated molecular patterns (PAMPs) and is important for induction of antiviral genes, activation of dendritic cells, and initiation of adaptive immunity (1, 2). Type I IFNs signal through the IFN alpha receptor (IFNAR), which is a heterodimer composed of IFNAR1 and IFNAR2. Activation of IFNAR leads to formation of the nuclear complex IFN-stimulated gene factor 3 (ISGF3), which consists of STAT1, STAT2, and IRF-9 (3, 4). ISGF3 binds to IFN-stimulated response elements (ISREs) to initiate transcription of interferon-stimulated genes (3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: Tissue Factor (TF)/CD142 (Coagulation factor III/Thromboplastin) is a type-I transmembrane glycoprotein that serves as the cell surface receptor and cofactor for blood coagulation factors VII and VIIa, and thus plays a central role in hemostasis and thrombosis (1). The TF:VIIa receptor-ligand complex is widely recognized as the initiator of the extrinsic blood coagulation protease cascade, which ultimately leads to the generation of fibrin and thrombin (1). A member of the type-II cytokine receptor superfamily, TF has also been shown to engage the PI3K (2) and MAPK (3) signaling cascades upon binding to factor VIIa in order to drive cellular responses such as cell migration, growth, and proliferation. Although the function of TF under physiologic conditions is to coordinate blood clotting in response to tissue damage, TF is implicated in pathologic conditions such as tumorigenesis. Indeed, TF is aberrantly expressed in colorectal cancer, breast cancer, pancreatic cancer, and glioblastoma multiforme (4). It has been shown to promote tumor angiogenesis, tumor growth, metastasis, and venous thrombosis (5). Given that TF overexpression is associated with numerous types of solid tumors, it has garnered much attention as a potential therapeutic target.

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ETS-related gene (ERG) is a member of the E-26 transformation-specific (ETS) family of sequence-specific DNA-binding transcription factors (1). ERG plays important and highly conserved roles in vertebrate development. Early in embryonic development, ERG is highly expressed in the embryonic mesoderm and endothelium, where it plays a critical role in the formation of the vascular system, urogenital tract and bone development (2,3). Later in embryonic development, ERG functions to regulate the pluripotency of hematopoietic stem cells, endothelial cell homeostasis and angiogenesis (2,4-7). ERG expression is not restricted to development. In adult mouse, ERG is normally expressed in endothelial tissues, including adrenal, cartilage, heart, spleen, lymphatic endothelial and eosinophil cells (8). However, deregulation of ERG activity, often resulting from chromosomal rearrangements, has been implicated and linked to poor prognosis in a number of different cancers. Chromosomal translocations generating EWS/ERG chimeric proteins comprised of the amino-terminal transactivation domain of Ewing’s sarcoma breakpoint region 1 (EWS) and the carboxy-terminal ETS domain of ERG have been identified in 5-10% of Ewing’s sarcoma, an aggressive bone and soft tissue tumor (9). Chromosomal translocations between ERG and TLS/FUS or ERG and ELF4 have been implicated in acute myeloid leukemia (10, 11). Over-expression of ERG, resulting from gene fusion with the androgen-driven promoter of the TMPRSS2 gene, has been identified as a key driver of metastasis and marker for poor prognosis in prostate cancer (12).

$106
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the phosphorylation of glyceraldehyde-3-phosphate during glycolysis. Though differentially expressed from tissue to tissue (1), GAPDH is thought to be a constitutively expressed housekeeping protein. For this reason, GAPDH mRNA and protein levels are often measured as controls in experiments quantifying specific changes in expression of other targets. Recent work has elucidated roles for GAPDH in apoptosis (2), gene expression (3), and nuclear transport (4). GAPDH may also play a role in neurodegenerative pathologies such as Huntington and Alzheimer's diseases (4,5).

$131
200 µl
This Cell Signaling Technology antibody is conjugated to FITC under optimal conditions and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS

Application Methods: Flow Cytometry

Background: Isotype control antibodies are used to estimate the nonspecific binding of target primary antibodies due to Fc receptor binding or other protein-protein interactions. An isotype control antibody should have the same immunoglobulin type and be used at the same concentration as the test antibody.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated HEXIM1 (D5Y5K) Rabbit mAb #12604.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry

Background: Hexamethylene bis-acetamide-inducible protein 1 (HEXIM1) was originally identified in vascular smooth muscle cells as a protein that is upregulated upon treatment with the differentiating agent hexamethylene bisacetamide (1). HEXIM1 binds 7SK RNA, a highly abundant non-coding RNA, and together they act as a potent inhibitor of positive transcription elongation factor b (P-TEFb) (2,3). P-TEFb phosphorylates the C-terminal domain of the largest subunit of RNA polymerase II and is an important regulator of transcription elongation (4-8). 7SK RNA-bound HEXIM1 interacts with the cyclin T1 subunit of P-TEFb, sequestering P-TEFb in an inactive form leading to transcription inhibition (2,3). The regulation of the relative ratio of inactive to active P-TEFb in the cell by HEXIM1/7SK RNA is thought to play a critical role in regulation of a wide range of cellular gene expression programs such as estrogen and glucocorticoid receptor regulated genes (9-12).