Interested in promotions? | Click here >>

Product listing: Phospho-RSK2 (Ser227) (D53A11) Rabbit mAb, UniProt ID P51812 #3556 to Phospho-MDM2 (Ser166) Antibody, UniProt ID Q00987 #3521

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 90 kDa ribosomal S6 kinases (RSK1-4) are a family of widely expressed Ser/Thr kinases characterized by two nonidentical, functional kinase domains (1) and a carboxy-terminal docking site for extracellular signal-regulated kinases (ERKs) (2). Several sites both within and outside of the RSK kinase domain, including Ser380, Thr359, Ser363, and Thr573, are important for kinase activation (3). RSK1-3 are activated via coordinated phosphorylation by MAPKs, autophosphorylation, and phosphoinositide-3-OH kinase (PI3K) in response to many growth factors, polypeptide hormones, and neurotransmitters (3).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The c-Cbl proto-oncogene is a ubiquitously expressed cytoplasmic adaptor protein that is especially predominant in hematopoietic cells (1,2). c-Cbl is rapidly tyrosine-phosphorylated in response to stimulation of a variety of cell-surface receptors and becomes associated with a number of intracellular signaling molecules such as protein tyrosine kinases, phosphatidylinositol-3 kinase, Crk, and 14-3-3 proteins (3,4). c-Cbl possesses a highly conserved amino-terminal phosphotyrosine binding domain (TKB) and a C3HC4 RING finger motif. The TKB recognizes phosphorylated tyrosines on activated receptor tyrosine kinases (RTKs) as well as other nonreceptor tyrosine kinases. The RING finger motif recruits ubiquitin-conjugating enzymes. These two domains are primarily responsible for the ubiquitin ligase activity of c-Cbl and downregulation of RTKs (3). Research studies have indicated that in human cancer tissues, c-Cbl is frequently tyrosine-phosphorylated in a tumor-specific manner (5). Phosphorylation of Tyr731 of c-Cbl provides a docking site for downstream signaling components such as p85 and Fyn (6).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The c-Cbl proto-oncogene is a ubiquitously expressed cytoplasmic adaptor protein that is especially predominant in hematopoietic cells (1,2). c-Cbl is rapidly tyrosine-phosphorylated in response to stimulation of a variety of cell-surface receptors and becomes associated with a number of intracellular signaling molecules such as protein tyrosine kinases, phosphatidylinositol-3 kinase, Crk, and 14-3-3 proteins (3,4). c-Cbl possesses a highly conserved amino-terminal phosphotyrosine binding domain (TKB) and a C3HC4 RING finger motif. The TKB recognizes phosphorylated tyrosines on activated receptor tyrosine kinases (RTKs) as well as other nonreceptor tyrosine kinases. The RING finger motif recruits ubiquitin-conjugating enzymes. These two domains are primarily responsible for the ubiquitin ligase activity of c-Cbl and downregulation of RTKs (3). Research studies have indicated that in human cancer tissues, c-Cbl is frequently tyrosine-phosphorylated in a tumor-specific manner (5). Phosphorylation of Tyr731 of c-Cbl provides a docking site for downstream signaling components such as p85 and Fyn (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: The zyxin family of proteins includes LIMD1, ajuba, trip6 and zyxin, each of which contains three LIM domains at the carboxy-terminus. Zyxin family members associate with the actin cytoskeleton and are components of both the cell-cell junction adhesive complex and the integrin-mediated adhesive complex. They shuttle in and out of the nucleus where they may function in transcriptional activation (1).Zyxin is involved in the regulation of mechanical force-induced actin polymerization at focal adhesions (2), and in regulation of adhesion and migration, possibly through recruitment of Ena/VASP proteins to focal adhesions (3). Zyxin interacts with and may regulate the function of the tumor suppressor myopodin, which inhibits tumor growth and metastasis (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Erk5 (Mitogen-activated protein kinase 7, Big mitogen-activated protein kinase 1) is a member of the MAPK superfamily implicated in the regulation numerous cellular processes including proliferation, differentiation, and survival (1-4). Like other MAPK family members, Erk5 contains a canonical activation loop TEY motif (Thr218/Tyr220) that is specifically phosphorylated by MAP2K5 (MEK5) in a growth-factor-dependent, Ras-independent mechanism (5-7). For example, EGF stimulation promotes Erk5 phosphorylation that induces its translocation to the nucleus where it phosphorylates MEF2C and other transcriptional targets (5,6). Erk5 is also activated in response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic progenitor cells where it promotes survival and proliferation (7). In neuronal cells, Erk5 is required for NGF-induced neurite outgrowth, neuronal homeostasis, and survival (8,9). Erk5 is thought to play a role in blood vessel integrity via maintenance of endothelial cell migration and barrier function (10-12). Although broadly expressed, research studies have shown that mice lacking erk5 display numerous cardiac defects, suggesting Erk5 plays a critical role in vascular development and homeostasis (1,2).

$348
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Mer (D21F11) XP® Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of Mer. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Mer (D21F11) XP® Rabbit mAb #4319.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation

Background: Mer tyrosine kinase belongs to a receptor tyrosine kinase family with Axl and Tyro3. This family is characterized by a common NCAM (neural adhesion molecule)-related extracellular domain and a common ligand, GAS6 (growth arrest-specific protein 6). Mer protein has an apparent molecular weight of 170-210 kDa due to different glycosylation patterns generated in different cell types. Mer can be activated by dimerization and autophosphorylation through ligand binding or homophilic cell-cell interaction mediated by its NCAM-like motif (1). The downstream signaling components of activated Mer include PI3 kinase, PLCγ, and MAP kinase (2). Family members are prone to transcriptional regulation and carry out diverse functions including the regulation of cell adhesion, migration, phagocytosis, and survival (3). Mer regulates macrophage activation, promotes apoptotic cell engulfment, and supports platelet aggregation and clot stability in vivo (4). Investigators have found that overexpression of Mer may play a cooperative role in leukemogenesis and may be an effective target for biologically based leukemia/lymphoma therapy (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The protein inhibitor of activated Stat (PIAS) proteins, which include PIAS1, PIAS3, PIASx, and PIASy, were originally characterized based on their interaction with the Stat family of transcription factors (1,2). PIAS1, PIAS3, and PIASx interact with and repress Stat1, Stat3, and Stat4, respectively (1-3). Deletion of PIAS1 leads to inhibition of interferon-inducible genes and increased protection against infection (4). The PIAS family contains a conserved RING domain that has been linked to a function as a small ubiquitin-related modifier (SUMO) ligase, coupling the SUMO conjugating enzyme Ubc9 with its substrate proteins (5,6). Numerous studies have now shown that PIAS family members can regulate the activity of transcription factors through distinct mechanisms, including NF-κB (7,8), c-Jun, p53 (5,9), Oct-4 (10), and Smads (11,12). The activity of PIAS1 is regulated by both phosphorylation and arginine methylation. Inflammatory stimuli can induce IKK-mediated phosphorylation of PIAS1 at Ser90, which is required for its activity (13). In addition, PRMT1 induces arginine methylation of PIAS1 at Arg303 following interferon treatment and is associated with its repressive activity on Stat1 (14).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The α isoform of protein phosphatase 2C (PP2C-α) is the catalytic subunit of a widely expressed serine/threonine phosphatase involved in regulation of the cell stress response (1,2). Also known as magnesium-dependent protein phosphatase (PPM1A), this monomeric phosphatase is a member of a conserved group of proteins that acts on many different substrates in numerous pathways. PP2C-α inhibits p38 MAPK and SAPK/JNK pathways activated in response to cell stress as seen in both in vivo and in vitro studies. Specifically, PP2C-α removes phosphates from MKK3 and MKK7, reducing activity of both proteins and inhibiting activation of the downstream kinases JNK and p38 MAPK, respectively (3). Another PP2C-α substrate is IKKβ, the critical regulator of NF-κB signaling. Dephosphorylation of IKKβ at Ser177/181 by PPM1A and PPM1B results in inactivation of IKKβ and inhibition of NF-κB signaling (4). PP2C-α is one of the phosphatases responsible for removing phosphate residues from cyclin dependent protein kinases. In a study using HeLa cell extracts, PP2C-α dephospohrylates CDK2 and CDK6, with a preference toward interacting with CDK2 phosphorylated at Thr160, a residue found in the activating T-loop of the kinase. Removal of phosphates from this site is thought to inactivate cyclin-associated kinases (5). PP2C-α induces cell cycle arrest and apoptosis, likely through activation of p53 though other pathways may also contribute to PP2C-α mediated cell death (6). Additional PP2C-α substrates include the Wnt signaling pathway protein axin (7) and CFTR, a chloride channel protein implicated in cystic fibrosis (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glycogen synthase kinase-3 (GSK-3) was initially identified as an enzyme that regulates glycogen synthesis in response to insulin (1). GSK-3 is a ubiquitously expressed serine/threonine protein kinase that phosphorylates and inactivates glycogen synthase. GSK-3 is a critical downstream element of the PI3K/Akt cell survival pathway whose activity can be inhibited by Akt-mediated phosphorylation at Ser21 of GSK-3α and Ser9 of GSK-3β (2,3). GSK-3 has been implicated in the regulation of cell fate in Dictyostelium and is a component of the Wnt signaling pathway required for Drosophila, Xenopus, and mammalian development (4). GSK-3 has been shown to regulate cyclin D1 proteolysis and subcellular localization (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rab5 is a member of the Ras superfamily of small Rab GTPases. Rab5 is localized at the plasma membrane and early endosomes and functions as a key regulator of vesicular trafficking during early endocytosis (1). The conformational change between Rab5 GTP/GDP states is essential for its biological function as a rate limiting regulator at multiple steps during endocytosis (1,2). Rab5 exerts its function by interacting with several Rab5-specific effectors (1-3). These proteins form complexes with Rab5 on a specialized Rab domain of the endosome and promote recycling of Rab5-cargo targets between endosome and the plasma membrane.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ADP-ribosylation factor (Arf) proteins are low molecular weight GTP binding proteins that belong to the Ras GTPase superfamily (1). Arf proteins are grouped into three distinct classes based on amino acid sequence and structural similarity, with Arf6 as the single class III protein to date. Arf6 is localized mainly to the plasma membrane and endosomes (1,2). This small GTPase interacts with PIP5K, PLD and Rac1, proteins important in lipid metabolism and actin regulation. Arf6 function depends upon its cycling between GDP- and GTP-bound states, which is regulated by associated GAP and GEF factors (3,4). Plasma membrane-associated Arf6 appears to play several functions during the many steps of membrane trafficking, including regulating membrane receptor internalization in both clathrin-dependent and independent pathways, endosomal recycling, and proximal actin reorganization and remodeling (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nod1/CARD4 is a cytosolic protein structually related to Apaf-1 and plant drug-resistance proteins that has been implicated in apoptosis and inflammatory responses to certain pathogenic bacteria (1-3). It contains an amino-terminal caspase recruitment domain (CARD) that is linked to a central nucleotide-binding domain (NBD; also known as a NOD domain) and is followed by carboxy-terminal leucine-rich repeats (LRR) (1). Like Apaf-1, Nod1 induces apoptosis by a CARD/NBD-dependent activation of caspase-9 (1). The primary function of Nod1 is thought to be as a sensor for certain pathogenic microbes and triggering inflammatory responses including the activation of NF-κB and JNK pathways (4-6). The LRR of Nod1 appears to be involved in recognition of microbial components and the CARD domain induces NF-κB activation in cooperation with the CARD containing kinase, RICK/RIP2/CARDIAK (1,5,6). Mutations in Nod1 have been linked increased susceptibility to asthma (7) and inflammatory bowel disease (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Fatty acid binding proteins (FABPs) bind to fatty acids and other lipids to function as cytoplasmic lipid chaperones (1). They participate in the transport of fatty acids and other lipids to various cellular pathways (2). The predominant fatty acid binding protein found in adipocytes is FABP4, also called adipocyte fatty acid binding protein or aP2. FABP4 is also expressed in macrophages (3). FABP4 knockout mice fed a high-fat and high-calorie diet become obese but develop neither insulin resistance nor diabetes, suggesting that this protein might be a link between obesity and insulin resistance and diabetes (4). Mice deficient in both FABP4 and ApoE show protection against atherosclerosis when compared with mice deficient only in ApoE (3). Mice carrying a FABP4 genetic variant exhibit both reduced FABP4 expression and a reduced potential for developing type 2 diabetes and coronary heart disease. A related study in humans indicated a similar pattern, suggesting that FABP4 may be a potential therapeutic target in the treatment of these disorders (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Bit1 is a mitochondrial protein discovered as a regulator of anoikis, a process of apoptosis triggered by the loss of cell adhesion to the extracellular matrix (1,2). Like several other mitochondrial apoptotic regulators (Cytochrome c, Smac, HtrA2, AIF, EndoG), Bit1 is released into the cytoplasm during apoptosis (1,3). Cytoplasmic Bit1 associates with the Groucho family of transcriptional regulator AES (1,4). Interaction between Bit1 and AES promotes apoptosis, and this complex is suppressed by integrin mediated cell attachment.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Nucleophosmin (NPM; also known as B23, numatrin or NO38) is an abundant phosphoprotein primarily found in nucleoli. It has been implicated in several distinct cellular functions, including assembly and transport of ribosomes, cytoplasmic/nuclear trafficking, regulation of DNA polymerase α activity, centrosome duplication and molecular chaperoning activities (1,2). The NPM gene is also known for its fusion with the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase. The NPM portion contributes to transformation by providing a dimerization domain, which results in activation of the fused kinase (3,4).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Nucleophosmin (NPM; also known as B23, numatrin or NO38) is an abundant phosphoprotein primarily found in nucleoli. It has been implicated in several distinct cellular functions, including assembly and transport of ribosomes, cytoplasmic/nuclear trafficking, regulation of DNA polymerase α activity, centrosome duplication and molecular chaperoning activities (1,2). The NPM gene is also known for its fusion with the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase. The NPM portion contributes to transformation by providing a dimerization domain, which results in activation of the fused kinase (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: GLI was first identified as a gene amplified in a malignant glioma (1) capable of transforming primary cells in cooperation with adenovirus E1A (2). GLI belongs to the Kruppel family of zinc finger proteins that includes three mammalian GLI proteins: GLI1, GLI2, and GLI3 (3). These GLI proteins are similar to the Drosophila homolog Cubitus interruptus (Ci) and function as transcription factors activated by the Hedgehog signaling pathway. Hedgehog signaling plays an important role in animal development, and research studies have shown that this pathway is aberrantly activated in many types of cancers (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Bruton's tyrosine kinase (Btk) is a member of the Btk/Tec family of cytoplasmic tyrosine kinases. Like other Btk family members, it contains a pleckstrin homology (PH) domain and Src homology SH3 and SH2 domains. Btk plays an important role in B cell development (1,2). Activation of B cells by various ligands is accompanied by Btk membrane translocation mediated by its PH domain binding to phosphatidylinositol-3,4,5-trisphosphate (3-5). The membrane-localized Btk is active and associated with transient phosphorylation of two tyrosine residues, Tyr551 and Tyr223. Tyr551 in the activation loop is transphosphorylated by the Src family tyrosine kinases, leading to autophosphorylation at Tyr223 within the SH3 domain, which is necessary for full activation (6,7). The activation of Btk is negatively regulated by PKCβ through phosphorylation of Btk at Ser180, which results in reduced membrane recruitment, transphosphorylation, and subsequent activation (8). The PKC inhibitory signal is likely to be a key determinant of the B cell receptor signaling threshold to maintain optimal Btk activity (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: GATA proteins comprise a group of transcription factors that are related by the presence of conserved zinc finger DNA binding domains, which bind directly to the nucleotide sequence core element GATA (1-3). There are six vertebrate GATA proteins, designated GATA-1 to GATA-6 (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Secreted Frizzled-related proteins (SFRPs) display homology and structural similarity to the extracellular cysteine-rich Wnt-binding domain of the G protein-coupled receptor Frizzled (1,2). To date, five distinct SFRPs (SFRP1 to 5) have been found in mammalian cells. These secreted proteins typically act as antagonists to Wnt signaling by directly binding and inhibiting Wnt proteins, or by binding Frizzled to block Wnt protein interaction with the receptor (3). The various SFRPs bind and regulate Wnt proteins differentially; these proteins also display distinct expression patterns as they play important roles in regulating development (4-7). SFRP proteins appear to act as tumor suppressors, with loss of expression or function correlating with many invasive forms of cancer. Deletion of the corresponding SFRP1 gene and promoter hypermethylation leading to gene silencing has been reported in a number of cancers. Abnormal expression of SRFP1 and other Wnt signaling proteins is associated with some cases of retinitis pigmentosa (reviewed in 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Bruton's tyrosine kinase (Btk) is a member of the Btk/Tec family of cytoplasmic tyrosine kinases. Like other Btk family members, it contains a pleckstrin homology (PH) domain and Src homology SH3 and SH2 domains. Btk plays an important role in B cell development (1,2). Activation of B cells by various ligands is accompanied by Btk membrane translocation mediated by its PH domain binding to phosphatidylinositol-3,4,5-trisphosphate (3-5). The membrane-localized Btk is active and associated with transient phosphorylation of two tyrosine residues, Tyr551 and Tyr223. Tyr551 in the activation loop is transphosphorylated by the Src family tyrosine kinases, leading to autophosphorylation at Tyr223 within the SH3 domain, which is necessary for full activation (6,7). The activation of Btk is negatively regulated by PKCβ through phosphorylation of Btk at Ser180, which results in reduced membrane recruitment, transphosphorylation, and subsequent activation (8). The PKC inhibitory signal is likely to be a key determinant of the B cell receptor signaling threshold to maintain optimal Btk activity (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The stromal cell derived factor 1 (SDF1/CXCL12) is a small, pro-inflammatory chemoattractant cytokine that regulates leukocyte trafficking through interactions with its cognate 7-transmembrane G protein-coupled receptors (1). The SDF1/CXCL12 receptor, CXCR4, also serves as a coreceptor for the entry of human immunodeficiency virus into target cells (2). SDF1/CXCL12 may regulate homing and maintenance of CXCR4-expressing stem or progenitor cells, including embryonic and many somatic stem cells (3,4). Many cancer cells express CXCR4, suggesting that SDF1/CXCL12 plays a role in cancer metastasis (5,6). Alternative splicing and differential processing during maturation produce a pair of SDF1/CXCL12 isoforms (SDF1/CXCL12α and SDF1/CXCL12β) that have different properties and biological activities (7). Additional isoforms of SDF1/CXCL12 have been reported (8,9).

$260
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescence analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CD31 (PECAM-1) (89C2) Mouse mAb #3528.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: RalA and RalB are members of the Ras family of small GTPases and are highly homologous in protein sequence. The functions of RalA and RalB are distinct yet overlapping. By binding to various effector proteins, RalA and RalB serve as important GTP sensors for exocytosis and membrane trafficking (1-3). RalA is required for Ras-related tumorigenesis (4) and RalB is important for tumor survival (5). In addition to tumor formation, Ral proteins also play a role in cancer cell migration and metastatic tumor invasion (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). DUBs are categorized into 5 subfamilies: USP, UCH, OTU, MJD, and JAMM. UCHL1, UCHL3, UCHL5/UCH37, and BRCA-1-associated protein-1 (BAP1) belong to the UCH family of DUBs, which all posses a conserved catalytic domain (UCH domain) of about 230 amino acids. UCHL5 and BAP1 have unique extended C-terminal tails. UCHL1 is abundantly expressed in neuronal tissues and testes, while UCHL3 expression is more widely distributed (3,4). Although UCHL1 and UCHL3 are the most closely related UCH family members with about 53% identity, their biochemical properties differ in that UCHL1 binds monoubiquitin and UCHL3 shows dual specificity toward both ubiquitin (Ub) and NEDD8, a Ub-like molecule. In particular, UCHL3 functions as a Ub hydrolase involved in the processing of both Ub precursors and ubiquitinated substrates, generating free monomeric Ub. This is accomplished through the ability of UCHL3 to recognize and hydrolyze isopeptide bonds at the C-terminal glycine of either Ub or NEDD8 (5-7). Recent functional studies have identified UCH-L3 as a critical regulator of adipogenesis through its ability to promote IGF-IR and insulin receptor signaling (8). Furthermore, UCHL3 has been shown to promote deubiquitination, recycling, and cell surface expression of the epithelial sodium channel (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). DUBs are categorized into 5 subfamilies: USP, UCH, OTU, MJD, and JAMM. UCHL1, UCHL3, UCHL5/UCH37, and BRCA-1-associated protein-1 (BAP1) belong to the UCH family of DUBs, which all posses a conserved catalytic domain (UCH domain) of about 230 amino acids. UCHL5 and BAP1 have unique extended C-terminal tails. UCHL1 is abundantly expressed in neuronal tissues and testes, while UCHL3 expression is more widely distributed (3,4). Although UCHL1 and UCHL3 are the most closely related UCH family members with about 53% identity, their biochemical properties differ in that UCHL1 binds monoubiquitin and UCHL3 shows dual specificity toward both ubiquitin (Ub) and NEDD8, a Ub-like molecule. In particular, UCHL3 functions as a Ub hydrolase involved in the processing of both Ub precursors and ubiquitinated substrates, generating free monomeric Ub. This is accomplished through the ability of UCHL3 to recognize and hydrolyze isopeptide bonds at the C-terminal glycine of either Ub or NEDD8 (5-7). Recent functional studies have identified UCH-L3 as a critical regulator of adipogenesis through its ability to promote IGF-IR and insulin receptor signaling (8). Furthermore, UCHL3 has been shown to promote deubiquitination, recycling, and cell surface expression of the epithelial sodium channel (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: RalA and RalB are members of the Ras family of small GTPases and are highly homologous in protein sequence. The functions of RalA and RalB are distinct yet overlapping. By binding to various effector proteins, RalA and RalB serve as important GTP sensors for exocytosis and membrane trafficking (1-3). RalA is required for Ras-related tumorigenesis (4) and RalB is important for tumor survival (5). In addition to tumor formation, Ral proteins also play a role in cancer cell migration and metastatic tumor invasion (6,7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PNK (polynucleotide kinase) is a DNA repair enzyme that participates in single strand break repair and non-homologous end rejoining (NHEJ) for double strand breaks. PNK possesses a 5'-DNA kinase activity and a 3'-DNA phosphatase activity (1,2). It has three domains, a C-terminal kinase domain, a central phosphatase domain, and an N-terminal forkhead associated (FHA) domain that is responsible for protein-protein interactions. Reduction in expression of PNK by RNAi sensitizes cells to ionizing radiation and topoisomerase I inhibitors (3)

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: MDM2, a ubiquitin ligase for p53, plays a central role in regulation of the stability of p53 (1). Akt-mediated phosphorylation of MDM2 at Ser166 and Ser186 increases its interaction with p300, allowing MDM2-mediated ubiquitination and degradation of p53 (2-4). Phosphorylation of MDM2 also blocks its binding to p19ARF, increasing the degradation of p53 (3).