Microsize antibodies for $99 | Learn More >>

Product listing: MEP50 Antibody, UniProt ID Q9BQA1 #2823 to Lck (73A5) Rabbit mAb, UniProt ID P06239 #2787

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: MEP50 (methylosome protein 50) is a component of the methylosome, a protein arginine methyltransferase complex that modifies specific arginine residues found in arginine- and glycine-rich regions of some spliceosomal Sm proteins. MEP50 is important for methylosome activity and may regulate the transfer of Sm proteins to the SMN (survival of motor neurons) complex, an early step in the assembly of U snRNPs. Both the methylosome and the SMN complex are essential for the assembly of spliceosomal snRNPs (1).MEP50 is a WD repeat protein that may provide an interface for multiple protein interactions between methylosome proteins. (1). It binds to JBP1, an arginine protein methyltransferase component of the methylosome. MEP50 has been shown to interact with CTD phosphatase FCP1 (CTDP1), a protein that may link the processes of transcriptional elongation and splicing (2), and with SUZ12, a polycomb group protein involved in transcriptional repression (3). JBP1 and MEP50 have also been reported to interact with the methyl-CpG binding protein complex MBD2/NuRD (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ and PLCε. The PLCβ subfamily includes four members, PLCβ1-4. All four members of the subfamily are activated by α- or β-γ-subunits of the heterotrimeric G-proteins (2,3).Phosphorylation is one of the key mechanisms that regulates the activity of PLC. Phosphorylation of Ser1105 by PKA or PKC inhibits PLCβ3 activity (4,5). Ser537 of PLCβ3 is phosphorylated by CaMKII, and this phosphorylation may contribute to the basal activity of PLCβ3. PLCγ is activated by both receptor and nonreceptor tyrosine kinases (6).PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783 and 1248 (7). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (8).

$122
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ and PLCε. The PLCβ subfamily includes four members, PLCβ1-4. All four members of the subfamily are activated by α- or β-γ-subunits of the heterotrimeric G-proteins (2,3).Phosphorylation is one of the key mechanisms that regulates the activity of PLC. Phosphorylation of Ser1105 by PKA or PKC inhibits PLCβ3 activity (4,5). Ser537 of PLCβ3 is phosphorylated by CaMKII, and this phosphorylation may contribute to the basal activity of PLCβ3. PLCγ is activated by both receptor and nonreceptor tyrosine kinases (6).PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783 and 1248 (7). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ring1A plays a role in polycomb group (PcG) protein function. PcG proteins are critically involved in transcriptional repression of Hox genes during development (1,2). PcG proteins form two distinct complexes: EED-EZH2 and the PRC complex, which is composed of at least Bmi1 and Ring1A/Ring1B. The EZH2-containing complex is responsible for the methylation of H3K27, and the PRC complex ubiquitylates H2A. EZH2 methylation is required prior to PRC ubiquitylation, and both are essential for Hox gene repression (3). It has recently been shown that PcG proteins silence a group of developmentally important regulator genes, referred to as bivalent genes (4). This regulation may be responsible for the ability of stem cells to self renew or switch to differentiate into multipotent progenitors. Aberrant epigenetic silencing by PcG proteins is also thought to be important in tumorigenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bim/Bod is a pro-apoptotic protein belonging to the BH3-only group of Bcl-2 family members including Bad, Bid, Bik, Hrk, and Noxa that contain a BH3 domain but lack other conserved BH1 or BH2 domains (1,2). Bim induces apoptosis by binding to and antagonizing anti-apoptotic members of the Bcl-2 family. Interactions have been observed with Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bfl-1, and BHRF-1 (1,2). Bim functions in regulating apoptosis associated with thymocyte negative selection and following growth factor withdrawal, during which Bim expression is elevated (3-6). Three major isoforms of Bim are generated by alternative splicing: BimEL, BimL, and BimS (1). The shortest form, BimS, is the most cytotoxic and is generally only transiently expressed during apoptosis. The BimEL and BimL isoforms may be sequestered to the dynein motor complex through an interaction with the dynein light chain and released from this complex during apoptosis (7). Apoptotic activity of these longer isoforms may be regulated by phosphorylation (8,9). Environmental stress triggers Bim phosphorylation by JNK and results in its dissociation from the dynein complex and increased apoptotic activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Cripto, also known as teratocarcinoma derived growth factor 1 (TDGF-1), belongs to the EGF-CFC family of proteins. Members of this family are characterized by an N-terminal signal peptide, a conserved cysteine rich domain (CFC motif), and a short hydrophobic carboxy-terminal tail that contains GPI cleavage and attachment sites. The GPI moiety anchors Cripto and family members to the extracellular plasma membrane (1). An O-linked fucosylation site within the EGF-like motif is required for Cripto and related family members to perform their function as co-receptors for TGF-β-related ligands such as Nodal and Vg1/GDF1 (2,3). Soluble forms of Cripto can be produced - these contain intact EGF and CFC domains, and are thought to have paracrine activities, as opposed to the autocrine activity of Cripto functioning as a coreceptor (4). Understanding of this paracrine activity is not complete, but it is proposed that Cripto may act as co-ligand for Nodal (3).Cripto is an important modulator of embryogenesis and oncogenesis (4). It is highly expressed in early embryos, and in embryonic stem (ES) cells where it is involved in cardiomyocytic differentiation and acts as a negative regulator of neurogenesis (5-7). Transient activation of Cripto is essential for the capacity of stem cell self-renewal and pluripotency in ES cells, and in some adult derived stem cells (8). Signaling through Cripto can also stimulate other activities that promote tumorigenesis such as stimulation of proliferation, cell motility, invasion, angiogenesis and epithelial-mesenchymal transition (EMT) (9-11). Cripto is highly expressed in a broad range of tumors, where it acts as a potent oncogene.

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Mixed lineage kinase 3 (MLK3) is a serine/threonine kinase that has an amino-terminal SH3 domain followed by the kinase domain and two leucine zippers, a cdc42/Rac1 binding (CRIB) domain and several other domains/motifs at the carboxy-terminal region. CRIB triggers the dimerization of MLK3 via its tandem leucine zippers, followed by the intramolecular phosphorylation and subsequent activation of MLK3 (1,2). Autophosphorylation of Thr277 and Ser281 is essential for MLK3 kinase activity (3). Ser281 is also phosphorylated by HPK in an in vitro kinase assay (3). MLK3 functions as a MAPKKK of the SAPK/JNK stress pathway by directly phosphorylating SEK1/MKK4 and MKK7, although it is controversial whether MLK3 is involved in p38 stress pathway activation (1,4). MLK3 also functions as an IκB kinase and mediates the activation of the transcriptional factor NF-κB stimulated by CD3/CD28, suggesting a role for MLK3 in immune and inflammatory responses (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Grp75, also known as mortalin, is a member of Hsp70 family of chaperone proteins that is not heat-inducible (1,2). This protein is essential for transporting many mitochondrial proteins from the cytoplasm to mitochondria (3). Grp75 inactivates the tumor suppressor p53 (4). Studies found that Grp75 is overexpressed in many tumor tissues and immortalized human cell lines, suggesting its role in the tumor formation (5). Grp75 is also implicated in cell aging, as its overexpression appears to prolong the life span of human fibroblasts (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: RECQL4 is a member of the RecQ family of DNA helicases that plays an important role in global genomic stability. There are five members of this family in humans, and mutations in three of these, BLM, WRN and RECQL4, give rise to disorders that are characterized by premature aging and a predisposition to cancer (1). Despite the presence of a helicase domain, no helicase activity has been reported for RECQL4. Rather, RECQL4 has an ATPase function that is stimulated by ssDNA, and a ssDNA annealing activity that is inhibited by RPA (2). RECQL4 has been reported to interact with ubiquitin ligases UBR1 and UBR2 (3). The role of RECQL4 in tumor suppression and the maintenance of genomic integrity has been attributed to it’s activities associated with the regulation of DNA replication, and DNA recombination and repair (4-6).Mutations in the RECQL4 gene have been identified in a subset of patients with Rothmund-Thomson syndrome (RTS) - a disorder characterized by growth deficiency, skin and skeletal abnormalities, and cancer predisposition. Two more autosomal recessive disorders have been associated with RECQL4 gene mutations: RAPADILINO, and Baller-Gerold syndromes (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: SET7/SET9 is a member of the SET domain-containing family, and can specifically methylate Lys4 on histone H3 (1). Like most other lysine-directed histone methyltransferases, it contains a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste and Trithorax proteins. Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Methylation of histone H3 Lys4 enhances transcriptional activation by coordinating the recruitment of BPTF, a component of the NURF chromatin remodeling complex, and WDR5, a component of multiple histone methyltransferase complexes (4,5). In addition, methylation of lysine 4 blocks transcriptional repression by inhibiting the binding of the NURD histone deacetylation complex to the amino-terminal tail of histone H3 and interfering with SUV39H1-mediated methylation of histone H3 Lys9 (1). SET7/SET9 is highly active on free histone H3, but only very weakly methylates H3 within nucleosomes (1). Besides histones, SET7/SET9 also methylates Lys189 of the TAF10, a member of the TFIID transcription factor complex, and Lys372 of the p53 tumor suppressor protein (6,7). Methylation of TAF10 stimulates transcription in a promoter-specific manner by increasing the affinity of TAF10 for RNA polymerase II, which may potentiate pre-initiation complex formation (6). Methylation of p53 at Lys372 increases protein stability and leads to upregulation of target genes such as p21. Thus the loss of SET7/SET9 may represent another mechanism for the inactivation of p53 in human cancers (7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells.The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Survivin (71G4B7) Rabbit mAb #2808.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Survivin is a 16 kDa anti-apoptotic protein highly expressed during fetal development and cancer cell malignancy (1). Survivin binds and inhibits caspase-3, controlling the checkpoint in the G2/M-phase of the cell cycle by inhibiting apoptosis and promoting cell division (2,3). This regulatory process requires the phosphorylation of survivin at Thr34 by p34 cdc2 kinase (4). Gene targeting using a Thr34 phosphorylation-defective survivin mutant, as well as antisense survivin, have been shown to inhibit tumor growth (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Survivin is a 16 kDa anti-apoptotic protein highly expressed during fetal development and cancer cell malignancy (1). Survivin binds and inhibits caspase-3, controlling the checkpoint in the G2/M-phase of the cell cycle by inhibiting apoptosis and promoting cell division (2,3). This regulatory process requires the phosphorylation of survivin at Thr34 by p34 cdc2 kinase (4). Gene targeting using a Thr34 phosphorylation-defective survivin mutant, as well as antisense survivin, have been shown to inhibit tumor growth (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: INCENP (inner centromere protein antigens 135 kDa, 155 kDa) is a chromosomal passenger protein crucial for multiple events that mediate chromosome separation during mitosis (1). At prophase INCENP is associated with chromatin whereas during prometaphase and metaphase it translocates to the inner centromere (1). Depletion of INCENP results in aberrant chromosome alignment at the metaphase plate, incomplete chromosome separation, and disruption of proper spindle formation and cytokinesis (2). INCENP is part of the chromosomal passenger complex that also contains Aurora B, borealin and survivin (2). Aurora B and INCENP are mutually dependent on each other for proper localization (3), and in Drosophila cells and C.elegans embryos that lack INCENP or survivin, Aurora B cannot organize the kinetochores and the midbody (4,5). Phosphorylation on INCENP by CDK1 on Thr59 and Thr388 leads to the association of INCENP with Plk1, another important regulator of mitotic entry and exit (6). Interaction of INCENP with Plk1 is necessary for recruitment of Plk1 to the kinetochores, and the metaphase to anaphase transition (6). Interactions have also been reported between INCENP and heterochromatin protein 1α (HP1) (7) and β-tubulin (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Wiskott-Aldrich syndrome proteins (WASPs) mediate actin dynamics by activating the Arp2/3 actin nucleation complex in response to activated Rho family GTPases. In mammals, five WASP family members have been described. Hematopoietic WASP and ubiquitously expressed N-WASP are autoinhibited in unstimulated cells. Upon stimulation they are activated by cdc42, which relieves the autoinhibition in conjunction with phosphatidyl inositol 4,5-bisphosphate. Three WAVE (Wasf, SCAR) family proteins are similar in sequence to WASP and N-WASP but lack the WASP/N-WASP autoinhibition domains and are indirectly activated by Rac (reviewed in 1). Both WASP and WAVE functions appear to be essential, as knockout of either N-WASP or Scar-2 in mice results in cardiac and neuronal defects and embryonic lethality (2,3). Loss of WASP results in immune system defects and fewer immune cells (4). WAVE-2 (WASF2) is widely distributed, while WAVE-1 and WAVE-3 are strongly expressed in brain (5). WAVE-3 may act as a tumor suppressor in neuroblastoma, a childhood disease of the sympathetic nervous system (6). Increased expression of WAVE-3 is seen in breast cancer, and studies in breast adenocarcinoma cells indicate that WAVE-3 regulates breast cancer progression, invasion and metastasis through the p38 mitogen-activated protein kinase (MAPK) pathway (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: SH2D1A and SH2D1B are small, adaptor proteins with a single SH2-domain that play important signal transduction roles mediated by the signaling lymphocytic activation molecule (SLAM) family receptors (1). SH2D1A (also called SAP or SLAM-associated protein) is frequently mutated in patients with X-linked lymphoproliferative disease (Duncan’s disease), which is characterized by extreme susceptibility to Epstein-Barr virus; approximately 50 different SH2D1A mutations have been reported to date (2-4). The single SH2D1B gene in humans (also called EAT-2 or Ewing's sarcoma's/FLI1-activated transcript 2) is present as a pair of duplicated EAT-2A and EAT-2B genes with identical genomic organization in mouse and rat (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Hexokinase catalyzes the conversion of glucose to glucose-6-phosphate, the first step in glycolysis. Four distinct mammalian hexokinase isoforms, designated as hexokinase I, II, III, and IV (glucokinase), have been identified. Hexokinases I, II, and III are associated with the outer mitochondrial membrane and are critical for maintaining an elevated rate of aerobic glycolysis in cancer cells (Warburg Effect) (1) in order to compensate for the increased energy demands associated with rapid cell growth and proliferation (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Survivin is a 16 kDa anti-apoptotic protein highly expressed during fetal development and cancer cell malignancy (1). Survivin binds and inhibits caspase-3, controlling the checkpoint in the G2/M-phase of the cell cycle by inhibiting apoptosis and promoting cell division (2,3). This regulatory process requires the phosphorylation of survivin at Thr34 by p34 cdc2 kinase (4). Gene targeting using a Thr34 phosphorylation-defective survivin mutant, as well as antisense survivin, have been shown to inhibit tumor growth (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Survivin is a 16 kDa anti-apoptotic protein highly expressed during fetal development and cancer cell malignancy (1). Survivin binds and inhibits caspase-3, controlling the checkpoint in the G2/M-phase of the cell cycle by inhibiting apoptosis and promoting cell division (2,3). This regulatory process requires the phosphorylation of survivin at Thr34 by p34 cdc2 kinase (4). Gene targeting using a Thr34 phosphorylation-defective survivin mutant, as well as antisense survivin, have been shown to inhibit tumor growth (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Originally identified in Xenopus (1), and later in human cells (2), claspin is a mediator of Chk1 signal transduction at the replication checkpoint and in response to DNA damage. Expression of claspin is cell cycle-regulated, with protein levels peaking at the S/G2 phase (2). Expression is negatively regulated by both proteosome- and caspase-mediated degradation (3), and stabilized by activation of Chk1 (4). Claspin is a chromatin-bound protein, and has been shown to interact with the PNCA complex in the absence of DNA damage (5). Following checkpoint activation it remains chromatin-bound but is released from the PCNA complex and is phosphorylated in an ATR-dependent manner. Phosphorylated claspin interacts with several components of the DNA damage response including BRCA1 (6) and Chk1 (7), leading to ATR-dependent phosphorylation on each of these proteins. Phosphorylated Rad17 has also been shown to bind to and regulate the phosphorylation of claspin (8). It has been proposed that claspin behaves as a tumor suppressor in come cases since down-regulation promotes apoptosis following genotoxic stress (2). Conversely, claspin seems to behave as an oncogene in other instances since overexpression promotes cellular proliferation (6). Upregulated claspin has been suggested to be a sensitive marker of abnormally proliferating cells (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Secretory proteins translocate into the endoplasmic reticulum (ER) during synthesis where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) has two thioredoxin homology domains and catalyzes the formation and isomerization of these disulfide bonds (2). Other ER resident proteins that possess thioredoxin homology domains, including ER stress protein 72 (ERp72), constitute the PDI family (3,4). ERp72 contains three thioredoxin homology domains (3) and plays a role in the formation and isomerization of disulfide bonds (3,4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Lyn, one of the Src family members, is predominantly expressed in hematopoietic cells (1). Two tyrosine residues have been reported to play a crucial role in the regulation of protein tyrosine kinases of the Src family. Autophosphorylation of Tyr396 (equivalent to Tyr416 of Src), located in the catalytic domain, correlates with enzyme activation. Csk-mediated phosphorylation of the carboxy-terminal Tyr507 (equivalent to Tyr527 of Src) inactivates the kinase. Tyrosine phosphorylation and activation of Lyn occurs upon association with cell surface receptors such as the B cell Ag receptor (BCR) and CD40 (2-4). Studies using knockout mice have shown that the net effect of Lyn deficiency is to render B cells hypersensitive to BCR stimulation (5-7), suggesting that the most critical role for Lyn in vivo is in the down-regulation of B cell responses. Lyn is also involved in controlling the migration and development of specific B cell populations (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Stearoyl-CoA desaturase 1 (SCD1) is a key lipogenic enzyme found in the endoplasmic reticulum that catalyzes the conversion of palmitoyl–CoA and stearoyl–CoA to palmitoleoyl–CoA (16:1) and oleoyl–CoA (18:1) (1-3). Palmitoleate and oleate are the major components of triglycerides, membrane phospholipids and cholesterol esters (1). SCD1-knockout mice show improved insulin sensitivity and reduced body fat (1). Disruption of SCD1 in mouse brown adipose tissue strengthens insulin signaling and results in increased translocation of Glut4 to plasma membrane and enhanced uptake of glucose (4). Furthermore, SCD1 is essential for the onset of diet-induced body weight gain (1) and insulin resistance in the liver (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia and Rad3-related kinase (ATR) are PI3 kinase-related kinase (PIKK) family members that phosphorylate multiple substrates on serine or threonine residues that are followed by a glutamine in response to DNA damage or replication blocks (1-3). Despite the essential role of ATR in cell cycle signaling and DNA repair processes, little is known about its activation. ATR was long thought to exist in a constitutively active state in cells, with DNA damage-induced signaling occurring via recruitment of ATR to single stranded DNA and sites of replication stress. Phosphorylation of ATR at serine 428 in response to UV-induced DNA damage has been suggested as a means of activating ATR (4,5). Recent work has shown autophosphorylation of ATR at threonine 1989. Like ATM Ser1981, phosphorylation of ATR Thr1989 occurs in response to DNA damage, indicating that phosphorylation at this site is important in ATR-mediated signaling (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Adiponectin, also termed AdipoQ, Acrp30, apM1 and GBP28, is an adipokine expressed exclusively in brown and white adipocytes (1). It is secreted into the blood and exists in three major forms: a low molecular weight trimer, a medium molecular weight hexamer and a high molecular weight multimer (1). Adiponectin levels are decreased in obese and insulin-resistant mice and humans (2), suggesting that this adipokine is critical to maintain insulin sensitivity. Adiponectin stimulates the phosphorylation of AMPKα at Thr172 and activates AMPK in skeletal muscle (3). It also stimulates glucose uptake in myocytes (3). The block of AMPK activation by a dominant-negative AMPKα2 isoform inhibits the effect of adiponectin on glucose uptake, indicating that adiponectin stimulates glucose uptake and increases insulin sensitivity through its action on AMPK (3). Adiponectin mutants that are not able to form oligomers larger than trimers have no effect on the AMPK pathway (4). Mutations that render adiponectin unable to form high molecular weight multimers are associated with human diabetes (4), indicating the importance of multimerization for adiponectin activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).