Interested in promotions? | Click here >>

Product listing: Matrix Remodeling Antibody Sampler Kit, UniProt ID P01033 #73959 to CXCR5 (D6L3C) Rabbit mAb (IHC Specific), UniProt ID P32302 #72172

The Matrix Remodeling Antibody Sampler Kit provides an economical means of detecting different MMPs and TIMPs using the specific corresponding antibodies. The kit contains enough antibody to perform at least two western blot experiments with each primary antibody.

Background: Matrix remodeling is mainly controlled by MMPs and TIMPs. The matrix metalloproteinase (MMP) family of proteases are a group of zinc-dependent enzymes that target extracellular proteins, including growth factors, cell surface receptors, adhesion molecules, matrix structural proteins, and other proteases (1, 2). Among the family members, MMP-2, MMP-3, MMP-7, MMP-9, and MMP14 (MT1-MMP) have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (3). MMP activity is regulated by mechanisms of both transcriptional control and post translational protein processing. Once synthesized, MMPs exist as latent proenzymes. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full-length protein (4). MMP activity can be inhibited through its binding to endogenously expressed TIMPs. TIMPs are members of the family of tissue inhibitors of matrix metalloproteinases that include TIMP1, TIMP2, TIMP3, and TIMP4. The main function of TIMPs is their inhibitory effect on MMPs. TIMPs irreversibly inactivate MMPs by direct binding MMPs and chelating their zinc cofactor at the catalytic site to inhibit the proteinase function (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Stomatin-like protein 2 (SLP-2 and also known as STOML2) is a lipid-anchored mitochondrial protein that is part of a large protein complex that regulates mitochondrial biogenesis and function. Proteomic studies identified SLP-2 as a widely expressed mitochondria-enriched protein (1). As a member of both the stomatin family and stomatin-prohibitin-flotillin-HfLC/K (SPFH) superfamily of proteins, SLP-2 forms large hetero-oligomeric complexes with other mitochondrial proteins, including prohibtin, mitofusin 2, and cardiolipin (2, 3). SLP-2 contains a highly conserved SPFH domain that mediates its ability to associate with the mitochondrial inner membrane and form specialized membrane microdomains. As an inner membrane organizer of other mitochondrial proteins, SLP-2 performs multiple mitochondrial functions, including regulation of mitochondrial biogenesis, energy/calcium homeostasis, translation, and mitochondrial-mediated cellular stress responses (3, 4, 5, 6, 7, 8). Enhanced SLP-2 expression is also associated with several human cancers, including gallbladder, rectal, and gastric cancer (9, 10, 11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytochrome P450 2D6 (CYP2D6) is a member of the cytochrome P450 superfamily of enzymes. CYP2D6 is located in the endoplasmic reticulum where it oxidizes substrates such as drugs and environmental chemicals (1,2). CYP2D6 metabolizes more than 25% of current commonly used drugs including antidepressants, antipsychotics, analgesics, beta-adrenergic blocking agents, antiarrythmics, and antiemetics. The CYP2D6 gene is highly polymorphic in humans, resulting in phenotypes that vary from poor metabolizer to super metabolizer. A patient's CYP2D6 genotype was shown to be a good predictor of drug response and side effects and is thus used to guide treatments (3-5). Although abundantly expressed in liver, CYP2D6 is also expressed in other organs including brain. In brain, CYP2D6 and other CYP family members are expressed in a cell-specific, region-specific manner (6-8). CYP2D6 functions as a neuroprotective enzyme that increases with age and is induced by nicotine and alcohol (9,10).

$180
1 ml
$676
5 x 1ml
5 ml
Protein A Magnetic Beads are an affinity matrix for the small-scale isolation of immunocomplexes from immunoprecipitations (IP assays). Protein A is covalently coupled to a magnetic particle.Protein A exhibits high affinity for subclasses of IgG from many species (including human, rabbit, mouse, rat, and sheep) and can be used for immunoprecipitation assays with these antibodies. Beads can be separated from solution using our 6-Tube Magnetic Separation Rack #7017 or 12-Tube Magnetic Separation Rack #14654, which concentrates the beads to the side of the tube instead of the bottom. This eliminates centrifugation steps, minimizes sample loss, increases washing efficiency, and saves time.The 1mL and 5mL size is enough material for 25 and 125 immunoprecipitations, respectively, when following our recommended protocol.Product Specifications:Bead Diameter: ~1.5 μmBinding Capacity: > 0.2 μg Rabbit IgG/μl bead slurry
APPLICATIONS

Application Methods: Immunoprecipitation

$489
96 assays
1 Kit
The PathScan® Total CD31 (PECAM-1) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of CD31 (PECAM-1) protein. A CD31 (PECAM-1) mouse mAb has been coated onto the microwells. After incubation with cell lysates, the CD31 (PECAM-1) proteins are captured by the coated antibody. Following extensive washing, a CD31 (PECAM-1) biotinylated detection mAb is added to detect captured CD31 (PECAM-1) proteins. HRP-linked Streptavidin is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of CD31 (PECAM-1) protein.Antibodies in the kit are custom formulations specific to the kit.
REACTIVITY
Human

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The type I interferon (IFN) family includes IFN-β1 and IFN-α1 through IFN-α13 in humans and IFN-α1 through IFN-α14 in mice. Type I IFN is produced following detection of pathogen-associated molecular patterns (PAMPs) and is important for induction of antiviral genes, activation of dendritic cells, and initiation of adaptive immunity (1, 2). Type I IFNs signal through the IFN alpha receptor (IFNAR), which is a heterodimer composed of IFNAR1 and IFNAR2. Activation of IFNAR leads to formation of the nuclear complex IFN-stimulated gene factor 3 (ISGF3), which consists of STAT1, STAT2, and IRF-9 (3, 4). ISGF3 binds to IFN-stimulated response elements (ISREs) to initiate transcription of interferon-stimulated genes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Integrins are transmembrane glycoproteins that form heterodimers consisting of one α and one β subunit. Integrin dimers act as receptors for extracellular matrix proteins and cell-surface ligands. Integrin signaling to (inside-out) and from (outside-in) extracellular molecules regulates multiple cellular processes, such as development, wound healing, immune response, invasion, metastasis, and angiogenesis (1,2). Integrin β2 (CD18) is the β subunit of the leukocyte-specific integrin family. Leukocyte integrins include Integrin β2 (CD18)/αL (CD11a) (LFA-1, lymphocyte function associated antigen 1), Integrin β2 (CD18)/αM (CD11b) (Mac-1), Integrin β2(CD18)/αX (CD11c), and Integrin β2 (CD18)/αD (CD11d). These integrins bind to immunoglobulin superfamily members, such as ICAM-1 and VCAM-1 on endothelial cells, to mediate firm adhesion and transendothelial migration of leukocytes (3). Integrin β2 (CD18) deficiency results in LAD (leukocyte adhesion deficiency), a disease characterized by impairment of leukocyte recruitment resulting in inability to fight infection (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Retromer is a heteropentameric protein complex that consists of two protein compounds, a sortin-nexin dimer and a trimeric VPS26-VPS29-VPS35 protein subcomplex. The retromer complex associates with endosomes at their cytosolic side to mediate retrograde transport of transmembrane proteins from endosomes to the trans-Golgi network (1-3). Vacuolar protein sorting-associated protein 29 (VPS29) is considered a cryptic metallophosphoesterase, as it contains a conserved metallophosphoesterase-fold that includes a phenylalanine in place of an essential histidine residue within the active site (4). While VPS29 is capable of binding metal ions, it does so with low affinity and exhibits no enzymatic activity. Instead, VPS29 serves as a scaffold protein that interacts with the carboxy-terminal region of VPS35 and is essential for association of the retromer with other endosomal transport proteins (5).

$269
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: S100A8 and S100A9 are calcium-binding proteins that form a noncovalent heterodimer present in monocytes, neutrophils, macrophages, and some epithelial cells (1, 2). S100A8 and S100A9 are secreted by a tubulin-dependent mechanism during inflammatory conditions and have antimicrobial and chemotactic functions (3-5). Extracellular S100A8/S100A9 also induces an inflammatory response in endothelial cells, including induction of proinflammatory chemokines and adhesion molecules and increased vascular permeability (6). S100A8/S100A9 induces and recruits myeloid-derived suppressor cells (MDSC) in tumor-bearing mice (7). MDSC produce additional S100A8/S100A9 themselves, resulting in a positive feedback mechanism that sustains MDSC accumulation (7). S100A8/S100A9 is also highly expressed in psoriatic skin, where it directly upregulates transcription of complement protein C3, which contributes to disease (8). In addition, tumor-infiltrating myeloid cells induce expression of S100A8 and S100A9 in cancer cells, which increases invasiveness and metastasis (9).

$108
250 PCR reactions
500 µl
SimpleChIP® Human Adam9 Intron 11 Primers contain a mix of forward and reverse PCR primers that are specific to intron 11 of the human ADAM metallopeptidase domain 9 (ADAM9). These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®.
REACTIVITY
Human

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$129
2 western blots
20 µl
$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Zap-70 (Tyr319)/Syk (Tyr352) (65E4) Rabbit mAb #2717.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The Syk family protein tyrosine kinase Zap-70 is expressed in T and NK cells and plays a critical role in mediating T cell activation in response to T cell receptor (TCR) engagement (1). Following TCR engagement, Zap-70 is rapidly phosphorylated on several tyrosine residues through autophosphorylation and transphosphorylation by the Src family tyrosine kinase Lck (2-6). Tyrosine phosphorylation correlates with increased Zap-70 kinase activity and downstream signaling events. Expression of Zap-70 is correlated with disease progression and survival in patients with chronic lymphocytic leukemia (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CaSR, the extracellular Calcium-Sensing Receptor, is a widely expressed G-protein coupled receptor (GPCR) involved in calcium homeostasis. CaSR operates as a sensor in parathyroid and kidney, and alterations in its activity have been shown to cause thyroid disease in humans (1). Activation of the receptor in response to extracellular calcium or other ligands causes activation of phospholipase C (PLC), release of IP3 and release of calcium from intracellular stores (2). Proinflammatory cytokines IL-1β and TNF-α increase CaSR gene expression in human thyroid and kidney cells through activation of the NF-κB pathway, and this pathway may be involved in hypocalcemia often seen in critically ill patients (3). Elevated calcium concentration and CaSR expression have been linked to proliferation and metastasis of skeletal metastatic prostate cancer cell lines (4). In intestinal epithelial cells, CaSR is involved in regulation of cyclic nucleotide metabolism and the fluid secretion that results in life-threatening fluid loss in response to intestinal pathogens (5). The interaction of CaSR with the actin-binding protein filamin may provide scaffolding for the organization of signaling pathways converging on the cytoskeleton, including CaSR-mediated MAPK pathway activation (6).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated c-Myb (D1B9E) Rabbit mAb #59995.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: c-Myb is a transcriptional activator that specifically recognizes the sequence 5'-YAAC[GT]G-3'. It is expressed in hematopoietic progenitor cells where it plays an important role in the control of proliferation and differentiation (1-3). c-Myb is required for transcription of genes involved in self-renewal of intestinal stem cells. Importantly, c-Myb regulates expression of Lgr5, a protein expressed in putative intestinal stem cells that give rise to all cell lineages of small intestinal crypts (4). c-Myb is reported to be expressed in colon crypt cells and in human colorectal cancer lines (5,6). Research has shown that c-Myb gene translocations and copy number alterations are found in several leukemias, breast cancer, and other solid tumors (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glioma tumor suppressor candidate region gene 2 protein (GLTSCR2), also known as protein interacting with carboxyl terminus-1 (PICT-1), displays tumor suppressor activity, in part, by interacting with the C-terminal region of PTEN and preventing its degradation. Disruption of this interaction upregulates activity of the PI3K/Akt signaling axis and promotes cell transformation (1,2). Further evidence to support the tumor suppressor role of GLTSCR2 lies in the finding that GLTSCR2 is localized to the tumor suppressive region of chromosome 19q, which is subject to lesions in human brain tumors (3). Indeed, research studies have demonstrated that GLTSCR2 harbors nonsense mutations and deletions in glioblastomas, which lead to a decrease in GLTSCR2 protein expression (4). GLTSCR2 has also been shown to exert tumor suppressor activity through its involvement in the nucleolar stress response. Research studies indicate that in response to ribosomal stress, GLTSCR2 translocates from the nucleolus to the nucleoplasm where it binds and stabilizes p53 tumor suppressor, which results in inhibition of cell cycle progression (5).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated SUZ12 (D39F6) XP® Rabbit mAb #3737.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (5). Suppressor of Zeste 12 (SUZ12) is a component of the PRC2 complex, which together with Ezh2 and Eed is absolutely required for histone methyl-transferase activity (6). SUZ12 contains a C2H2 zinc finger domain similar to the zinc finger domains found in sequence-specific DNA binding proteins and may mediate the interaction between EZH2 and nucleosomes (6). SUZ12 is overexpressed in several human tumors, including tumors of the colon, breast and liver (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Stimulator of interferon genes (STING, TMEM173, MITA) is a transmembrane adaptor protein that is a critical component of the cellular innate immune response to pathogenic cytoplasmic DNA (1,2). STING is a ubiquitously expressed protein found predominantly in the ER (1). The enzyme cGAMP synthase (cGAS) produces the second messenger cyclic-GMP-AMP (cGAMP) in response to cytoplasmic DNA (3,4). cGAMP binds and activates STING (3,4). In addition, detection of cytoplasmic DNA by nucleic acid sensors, including DDX41 or IFI16, results in STING activation (5,6). Following activation, STING translocates with TBK1 to perinuclear endosomes (7). The TBK1 kinase phosphorylates and activates interferon regulatory factors (IRFs) and NF-κB, which leads to the induction of type I interferon and other immune response genes (1,2,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PEAK1 (Pseudopodium-enriched atypical kinase 1 or sgk269) is a member of nonreceptor atypical tyrosine kinase family identified by MS analysis of purified psedopodium (1). PEAK1 is a multi-domain protein with a N-terminal Erk binding site, followed by actin-targeting/Src substrate/Erk substrate region, Crk binding site, Shc binding site, and a C-terminal kinase domain (1, 2). By interacting with different adaptors like Shc, Grb2, Src, and others, PEAK1 functions as an important regulator in different signaling pathways, namely the Src/PEAK1/ErbB2 (3), EGFR Shc1/PEAK1/Grb2(4), TGFβ/PEAK1/Src/MAPK (5), and fibronectin/PEAK1/Src (6) pathways. PEAK1 plays an instrumental role in a wide variety of biological processes including epithelial-mesenchymal transition (EMT), dynamics of focal adhesion, cancer metastatic growth and invasion as well as cancer drug resistance (3, 5-8). Phosphorylation of PEAK1 at Tyr665 or Tyr635 by SFK (Src family Kinases) has been shown to be essential for cancer cell migration and invasion as well as the turnover of focal adhesions (7, 9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated FoxO1 (C29H4) Rabbit mAb #2880.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fructose-1,6-bisphosphatase 1 (FBP1 or FBPase 1), a rate limiting enzyme in gluconeogenesis, catalyzes the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate (1). Inhibition of FBP1 expression in basal-like breast cancer (BLBC) cells leads to metabolic reprogramming, including enhanced glycolysis, which leads to increased glucose uptake, biosynthesis of macromolecules, and activation of PKM2 (1). This metabolic reprogramming endows tumor cells with cancer stem cell (CSC)-like properties, thereby increasing their tumorigenicity (1). Depletion of FBP1 was also reported in more than 600 clear cell renal cell carcinoma (ccRCC) tumors, suggesting that FBP1 may inhibit ccRCC tumor progression (2).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tom20 (D8T4N) Rabbit mAb #42406.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Mitochondria play a central role in cellular energy metabolism and are essential organelles in eukaryotes. In humans, 13 proteins are encoded by the mitochondrial genome while the vast majority of mitochondrial proteins are encoded by the nuclear genome. As a result, most mitochondrial proteins are synthesized as precursors in the cytoplasm and imported across mitochondrial membranes by one or more translocase protein complexes (1). The translocase of the outer mitochondrial membrane (TOM complex) facilitates the import of proteins through the outer mitochondrial membrane, while the complementary translocase of the inner membrane (TIM complex) is responsible for protein transport to the mitochondrial matrix. The TOM complex consists of the receptors Tom20, Tom22, and Tom70, and the channel-forming protein Tom40 (1). Tom20 is localized in the outer mitochondrial membrane and initially recognizes precursors with a presequence to facilitate protein import across the outer mitochondrial membrane (2). In a sequential process, recognition of the presequence by Tom20 is followed by tethering of the presequence to the Tom40 protein complex for efficient protein import (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Stat2 (113-kDa), originally purified from the nuclei of alpha-interferon-treated cells, is critical to the transcriptional responses induced by type I interferons, IFN-alpha/beta (1,2). Knockout mice with a targeted disruption of Stat2 have higher susceptibility to viral infection and altered responses to type I interferons (3). Stat2 is rapidly activated by phosphorylation at Tyr690 in response to stimulation by IFN-alpha/beta via associations with receptor-bound Jak kinases (4). Unlike other Stat proteins, Stat2 does not form homodimers. Instead, activated Stat2 forms a heterodimer with Stat1 and translocates to the nucleus. There, it associates with the DNA-binding protein p48 and forms the transcriptional activator complex, interferon-stimulated gene factor 3 (ISGF3), promoting transcription from the ISRE (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: S100A8 and S100A9 are calcium-binding proteins that form a noncovalent heterodimer present in monocytes, neutrophils, macrophages, and some epithelial cells (1, 2). S100A8 and S100A9 are secreted by a tubulin-dependent mechanism during inflammatory conditions and have antimicrobial and chemotactic functions (3-5). Extracellular S100A8/S100A9 also induces an inflammatory response in endothelial cells, including induction of proinflammatory chemokines and adhesion molecules and increased vascular permeability (6). S100A8/S100A9 induces and recruits myeloid-derived suppressor cells (MDSC) in tumor-bearing mice (7). MDSC produce additional S100A8/S100A9 themselves, resulting in a positive feedback mechanism that sustains MDSC accumulation (7). S100A8/S100A9 is also highly expressed in psoriatic skin, where it directly upregulates transcription of complement protein C3, which contributes to disease (8). In addition, tumor-infiltrating myeloid cells induce expression of S100A8 and S100A9 in cancer cells, which increases invasiveness and metastasis (9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated IDH1 (D2H1) Rabbit mAb #8137.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: IDH1 is one of three isocitrate dehydrogenases that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). These enzymes exist in two distinct subclasses that utilize either NAD or NADP+ respectively, as an electron acceptor (1). IDH1 is the NADP+-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. IDH2 and 3 are mitochondrial enzymes that also function in the Krebs cycle. IDH1 is inactivated by phosphorylation at Ser113 and contains a clasp-like domain wherein both polypeptide chains in the dimer interlock (2,3). IDH1 is expressed in a wide range of species and also in organisms that lack a complete citric acid cycle. Mutations in IDH1 have been reported in glioblastoma (4), acute myeloid leukemia (5,6), and other malignancies (7). IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway (8).

$305
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC-Cy7® and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: When T cells encounter antigens via the T cell receptor (TCR), information about the quantity and quality of antigens is relayed to the intracellular signal transduction machinery (1). This activation process depends mainly on CD3 (Cluster of Differentiation 3), a multiunit protein complex that directly associates with the TCR. CD3 is composed of four polypeptides: ζ, γ, ε and δ. Each of these polypeptides contains at least one immunoreceptor tyrosine-based activation motif (ITAM) (2). Engagement of TCR complex with foreign antigens induces tyrosine phosphorylation in the ITAM motifs and phosphorylated ITAMs function as docking sites for signaling molecules such as ZAP-70 and p85 subunit of PI-3 kinase (3,4). TCR ligation also induces a conformational change in CD3ε, such that a proline region is exposed and then associates with the adaptor protein Nck (5).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated MFF (E5W4M) XP® Rabbit mAb #84580.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Mitochondrial fission factor (MFF) is a tail-anchored protein that resides within the outer mitochondrial membrane and is part of the mitochondrial fission complex. MFF participates in mitochondrial fission by serving as one of multiple receptors for the GTPase dynamin-related protein 1 (Drp1) (1-4). Research studies have also shown that MFF is a peroxisomal membrane protein and participates in peroxisome fission by serving as a receptor for another GTPase, dynamin-like protein 1 (5,6).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Smad2/3 (D7G7) XP® Rabbit mAb #8685.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Brachyury (D2Z3J) Rabbit mAb #81694.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Brachyury protein, encoded by the T gene, is a transcription factor that is vital for the formation of posterior mesoderm and axial development during vertebrate embryogenesis (1). In the mouse, brachyury is necessary for mesodermal morphogenetic cell movements during gastrulation. Brachyury mutant mice die in utero and display deficient mesoderm formation including an abnormal notochord, missing posterior somites, and a reduced allantois (2). Human brachyury is expressed in the notochord, as well as in chordoma tumors that occur along the spine, making it a good marker for notochord and notochord-derived tumors (3,4). A common polymorphism in the human T gene has also been shown to be associated with development of the multifactorial neural tube defect, spina bifida (5,6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Multidrug resistance-associated protein 1 (MRP1/ABCC1) is a member of the MRP subfamily of ATP-binding cassette (ABC) transporters (1). MRP1/ABCC1 protein functions as an organic anion transporter. It has a broad range of substrates, including antineoplastic or therapeutic agents and the glutathione (GSH) conjugates of these compounds. MRP1/ABCC1 also transports physiological substrates such as folates, GSH and GSH disulfide (GSSG) conjugates of steroids, leukotrienes, and prostaglandins (2,3).Although MRP1/ABCC1 is generally expressed in normal tissue, upregulation of MRP1/ABCC1 has been found in a variety of solid tumors, including small cell lung cancer, breast cancer, and prostate cancer (1,4,5). Research studies show that overexpression of MRP1/ABCC1 facilitates the elimination of therapeutic agents from cancer cells and confers drug resistance in those patients. Research studies also show that elevated expression of MRP1/ABCC1 is a negative prognostic marker for breast cancer and small cell lung cancer, as the level of MRP1/ABCC1 is predictive of the response and toxicity of chemotherapeutic agents in those patients (6-10).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The modulation of chromatin structure is an essential component in the regulation of transcriptional activation and repression. Modifications can be made by at least two evolutionarily conserved strategies, through the disruption of histone-DNA contacts by ATP-dependent chromatin remodelers, or by histone tail modifications including methylation and acetylation. One of the four classes of ATP-dependent histone remodelers is the SWI/SNF complex, the central catalytic subunit of which is Brg1 or the highly related protein hBRM (1). This SWI/SNF complex contains varying subunits but its association with either Brg1 or hBRM remains constant (1). SWI/SNF complexes have been shown to regulate gene activation, cell growth, the cell cycle and differentiation (1). Brg1/hBRM have been shown to regulate transcription through enhancing transcriptional activation of glucocorticoid receptors (2). Although usually associated with transcriptional activation, Brg1/hBRM have also been found in complexes associated with transcriptional repression including with HDACs, Rb and Tif1β (3-5). Brg1/hBRM plays a vital role in the regulation of gene transcription during early mammalian embryogenesis. In addition, Brg1/hBRM also play a role as a tumor suppressors and Brg1 is mutated in several tumor cell lines (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: CXCR5 is a G protein-coupled receptor belonging to the chemokine receptor subfamily (1). Upon binding of its ligand, the chemokine CXCL13, CXCR5 initiates multiple intracellular signaling pathways that regulate cell proliferation, survival, and migration (2). CXCR5 is expressed in both mature B cells and follicular helper T cells, and respond to CXCL13 gradient to control lymphocyte migration towards secondary lymphoid tissues (3). CXCR5 has also been shown to be highly expressed in primary breast tumors, in correlation with their propensity to grow and metastasize (4).