Interested in promotions? | Click here >>

Product listing: α-Adducin (D7T7R) Rabbit mAb, UniProt ID P35611 #70174 to HPC4-Tag Antibody #68083

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The adducins (ADD) are cytoskeleton-associated proteins that help cap the ends of actin filaments, promote association between spectrin and actin, and participate in synapse assembly. The three closely related genes ADD1, ADD2, and ADD3 encode the α-adducin, β-adducin, and γ-adducin proteins (1). Research studies indicate that β-adducin is found at high levels in brain and hematopoietic tissues, whereas both α-adducin and γ-adducin are ubiquitously expressed (2). Adducin protein function is regulated by phosphorylation at a number of sites. Both PKA and PKC can phosphorylate α-adducin at Ser726 and β-adducin at Ser713, which inhibits calmodulin binding and adducin activity (3-5). Additionally, PKA (but not PKC) can phosphorylate β-adducin at Ser408, Ser436, and Ser481, which negatively affects spectrin-actin interactions (3). Phosphorylation of α-adducin at Thr445 and Thr480 by Rho-kinase regulates cell motility and membrane ruffling (6). Finally, CDK-1 phosphorylation of α-adducin at Ser12 and Ser355 during mitosis leads to association of α-adducin with the mitotic spindle, suggesting that α-adducin may play a role in mitotic regulation (7). Because α-adducin plays a role in regulating renal sodium reabsorption, it is not surprising that a number of studies show a relationship between ADD1 genetic polymorphisms and the development of hypertension (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: TAZ is a transcriptional co-activator with a PDZ-binding motif that is regulated by its interaction with 14-3-3 proteins (1). TAZ shares homology with the WW domain of Yes-associated protein (YAP) (1). TAZ is proposed to modulate the switch between proliferation and differentiation of mesenchymal stem cells (MSC) via interaction with transcription factors Runx2 and PPARγ. This process is critical to normal tissue development and the prevention of tumor formation. Due to its role in determination of MSC fate, TAZ may have clinical relevance to several human diseases caused by an imbalance of MSC differentiation (2,3). TAZ is negatively regulated via phosphorylation by LATS1/2, core kinases in the Hippo signaling pathway that controls stem cell development, tissue growth and tumor development (4).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: F4/80 (EMR1) is a heavily glycosylated G-protein-coupled receptor and is a well-established marker for mouse macrophages (1-3). Expression of F4/80 has also been observed in microglia and subset populations of dendritic cells (4).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric and immunofluorescence analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Non-phospho (Active) β-Catenin (Ser45) (D2U8Y) XP® Rabbit mAb #19807.
APPLICATIONS
REACTIVITY
Dog, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$180
1 ml
$676
5 x 1ml
5 ml
Protein G Magnetic Beads are an affinity matrix for the small-scale isolation of immunocomplexes from immunoprecipitations (IP assays). Protein G is covalently coupled to a magnetic particle.Protein G exhibits high affinity for subclasses of IgG from many species (including human, rabbit, mouse, rat, and sheep) and can be used for immunoprecipitation assays with these antibodies. Beads can be separated from solution using our 6-Tube Magnetic Separation Rack #7017 or 12-Tube Magnetic Separation Rack #14654 which concentrates the beads to the side of the tube instead of the bottom. This eliminates centrifugation steps, minimizes sample loss, increases washing efficiency, and saves time.The 1mL and 5mL size is enough material for 25 and 125 immunoprecipitations, respectively, when following our recommended protocol.Product Specifications: Bead Diameter: ~1.5 μmBinding Capacity: > 0.2 μg Rabbit IgG/μl bead slurry
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Host cell factor C1 (HCFC1) was first identified as the host cell factor for human herpes simplex virus infection. HCFC1 and the viral protein VP16 belong to a multi-protein complex that promotes transcription of viral immediate early genes (1). The relatively large HCFC1 protein contains 6 centrally located 26 amino acid repeats that can be O-GlcNAcylated and subjected to O-linked beta-N-acetylglucosamine transferase (OGT) cleavage (2-4). The resulting amino-terminal (HCFC1-N) and carboxy-terminal (HCFC1-C) fragments are non-covalently associated and play important roles in cell cycle regulation. The HCFC1-N peptide facilitates progression through the G1 phase of the cell cycle while HCFC1-C enables proper mitosis and cytokinesis during the M phase (5-7). As HCFC1 plays an important role in neurodevelopment, mutations in the corresponding gene are associated with neurodevelopmental disorders (e.g., intellectual disability) in humans (8).

$193
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD11c (integrin αX, ITGAX) is a transmembrane glycoprotein that forms an α/β heterodimer with CD18 (integrin β2), which interacts with a variety of extracellular matrix molecules and cell surface proteins (1). CD11c is primarily used as a dendritic cell marker. Dendritic cells can be classified into two major types: CD11c+ conventional dendritic cells that specialize in antigen presentation, and CD11c- plasmacytoid dendritic cells that specialize in type I interferon production (2, 3). CD11c expression has also been observed on activated NK cells, subsets of B cells, monocytes, granulocytes, and some B cell malignancies including hairy cell leukemia (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CENP-A, also known as the chromatin-associated protein CSE4 (capping-enzyme suppressor 4-p), is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin. The inherited localization of the centromere is specified by CENP-A (1). CENP-A deposition to the correct chromosomal location in early G1 phase is regulated by the Mis18 complex, which consists of Mis18-alpha, Mis18-beta, Mis18BP1, RbAp48 and RbAp46 (2).Mis18-alpha deficiency in mice results in inappropriate localization of CENP-A, as well as DNA methylation defects (3). Localization of the Mis18 complex to centromeres is regulated by the mitotic kinase Plk1 (polo-like kinase 1) (4).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Nucleolin (D4C7O) Rabbit mAb #14574.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nucleolin is a multi-functional protein that is one of the major components of the nucleoli (1). Nucleolin plays an essential role in various steps of ribosome biogenesis including rRNA synthesis, processing of pre-rRNA, pre-ribosomal RNA assembly, and transport of ribosomal proteins out of the nucleus (1-3). While the main function of nucleolin is ribosome biogenesis, it plays an important role in various other nuclear activities. Down regulation of nucleolin leads to increased expression of p53, defects in genome duplication, and a delay at prometaphase during mitosis leading to cell cycle arrest (4-6). In addition, nucleolin has been found in a complex with Rad51 and may participate in DNA repair by homologous recombination (7). Nucleolin binds to the catalytic subunit of the human telomerase reverse transcriptase, hTERT, and is thought to be involved in telomere maintenance (8). Nucleolin also possesses histone chaperone activity and is able to enhance the chromatin remodeling efficiency of SWItch/Sucrose Non Fermentable (SWI/SNF) and ATP-dependent chromatin-assembly factor (ACF), remove histone H2A-H2B dimers from nucleosomes, and facilitate the passage of RNA polymerase through chromatin (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nuclear respiratory factor 1 (NRF1) was identified as a transcription activator for the gene encoding cytochrome c (1). It was later found to play a role in the nuclear control of mitochondrial function (1). PGC-1 induces the expression of NRF1 and NRF2 (2). NRF1, along with the coactivator PGC-1, stimulates the promoter of mitochondrial transcription factor A, which regulates mitochondrial biogenensis and function (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cytoplasmic dynein is a multi-subunit motor complex that regulates microtubule organization as well as the transport and positioning of organelles. Dynactin is a multi-subunit dynein-activating complex, which regulates the interaction of the dynein motor with various cellular cargoes, and enhances dynein’s processivity. p150Glued/DCTN1/Dynactin 1 is the largest subunit of the dynactin complex (1-3). In mitosis, cytoplasmic dynein regulates spindle organization, chromosome movement and centrosome separation (4). The dynactin subunit p150Glued is phosphorylated at serine 19 by the mitotic kinase aurora A during anaphase, and this phosphorylation is required for the appropriate regulation of spindle assembly (5). In neurons, axonal transport is important for cellular function and survival. Dysfunction and mutations in dynein and dynactin subunits, including p150Glued, have been linked to human neurodegenerative diseases such as Alzheimer’s Disease (6-7), Perry Syndrome (8) and ALS (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab27 is a member of the Ras superfamily of small Rab GTPases implicated in exocytosis (1-2). The protein is localized in secretory lysosomes, such as melanosomes in melanocyte or lytic granules in cytotoxic T cells to control exosome secretion pathway (3-5). Rab27 has two isoforms, Rab27a and Rab27b. Rab27a colocalizes with part of CD63 staining vesicles, and Rab27b shows perinuclear distribution. Target knock out studies indicate that the isoforms control different steps of the exosome secretion pathway (6). Rab27a interacts with a wide range of effectors and is involved in multiple steps of exocytosis depending on the effector it associated with and the cell type that is involved (1,2). Rab27a has been shown to be an important player in leukocyte function, cancer metastasis and invasion, and insulin secretion (7-11)

$489
96 assays
1 Kit
PathScan® Phospho-FGF Receptor 4 (panTyr) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of tyrosine-phosphorylated FGR receptor 4 protein. An FGF receptor 4 rabbit mAb has been coated onto the microwells. After incubation with cell lysates, FGF receptor 4 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a phospho-tyrosine mouse detection mAb is added to detect captured phospho-FGF receptor 4 protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of FGF Receptor 4 protein phosphorylated on tyrosine residues.Antibodies in the kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

The N6-mA Methyltransferase Antibody Sampler Kit provides an economical means of detecting N6-mA methyltransfearse proteins using control antibodies against METTL3, METTL14, WTAP, and Virilizer. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: Methyltransferase-like protein 3 (METTL3) and methytransferase-like protein 14 (METTL14) are the two catalytic subunits of an N6-methyltransferase complex that methylates adenosine residues in RNA (1). Methylation of adenosine residues regulates mRNA splicing, processing, translation efficiency, editing and stability, in addition to regulating primary miRNA processing, and is critical for proper regulation of the circadian clock, embryonic stem cell self-renewal, immune tolerance, response to various stimuli, meiosis and mouse fertility (2,3). In this complex, METTL3 functions as the catalytic methyltransferase subunit and METTL14 functions as the target recognition subunit by binding to RNA (4). In addition, the Wilms tumor 1-associated protein (WTAP) functions as a regulatory subunit and is required for accumulation of the complex to nuclear speckles, which are sites of RNA processing (5). Several studies suggest a role for this complex in cancer. METTL3 expression is elevated in lung adenocarcinoma where it promotes growth, survival and invasion of human lung cancer cells (6). In addition, WTAP is over-expressed in a number of different cancers and positively regulates cell migration and invasion in glioblastoma and cholangiocarcinoma (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Caveolae ("little caves") are 60-80 nm pits representing specialized plasma membrane domains in many cell types. The principal protein component of caveolae is caveolin, a small integral membrane protein composed of three family members, including the widely expressed caveolin-1 and -2, and the muscle-specific caveolin-3 (1). Caveolin proteins are required for caveolae formation and serve as scaffolding proteins for the recruitment of signaling proteins. Research studies in cavelolin-deficient mice implicate cavelolin proteins in several pathologies, including diabetes, cancer, cardiovascular diseases, atherosclerosis, pulmonary disease, and muscular dystrophies (2).The cavin proteins (cavin-1, -2, -3, and -4 in mammals) are a family of caveolae-associated integral membrane proteins involved in the biogenesis and stability of caveolae. Cavin proteins form homo- or hetero-oligomers whose composition is tissue-specific, which may confer distinct functions of caveolae in various tissues (3). Cavin-1 (PTRF), which is widely expressed, is required for caveolae formation and is thought to play roles in lipid metabolism, adipocyte differentiation, and IGF-1 receptor signaling (4-6). Research studies involving prostate cancer suggest that expression of cavin-1 is related to tumor progression and angiogenesis/lymphangiogenesis (7-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cancer/testis antigens (CTAs) are a family of more than 100 proteins whose normal expression is largely restricted to immune privileged germ cells of the testis, ovary, and trophoblast cells of the placenta. Although most normal somatic tissues are void of CTA expression, due to epigenetic silencing of gene expression, their expression is upregulated in a wide variety of human solid and liquid tumors (1,2). As such, CTAs have garnered much attention as attractive targets for a variety of immunotherapy-based approaches to selectively attack tumors (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Ret (E1N9A) Rabbit mAb (Flow Preferred) #14699.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: G9a, also known as Euchromatic histone-lysine N-methyltransferase 2 (EHMT2), is a member of a family of histone lysine methyltransferases, each of which contains a conserved catalytic SET domain originally identified in Drosophila Su[var]3-9, Enhancer of zeste, and Trithorax proteins (1). Recombinant G9a can mono-, di- and tri-methylate histone H3 on Lys9 and Lys27 in vitro (1,2). However, in vivo G9a forms a complex with GLP, a G9a-related histone methyltransferase, and together these proteins function as the major euchromatic histone H3 Lys9 mono- and di-methyltransferases, creating transcriptionally repressive marks that facilitate gene silencing (3,4). G9a methylates itself on Lys165, a modification that regulates the association of HP1 repressor proteins with the G9a/GLP complex (5). The G9a/GLP complex also contains Wiz, a zinc finger protein that is required for G9a/GLP hetero-dimerization and complex stability (6). Wiz contains two CtBP co-repressor binding sites, which mediate the association of the G9a/GLP with the CtBP co-repressor complex (6). In addition, G9a and GLP are components of other large transcriptional co-repressor complexes, such as those involving E2F6 and CDP/cut (7-9). G9a interacts with DNMT1, and both proteins are required for methylation of DNA and histone H3 (Lys9) at replication foci, providing a functional link between histone H3 Lys9 and CpG methylation during DNA replication (10). G9a activity is critical for meiotic prophase progression, as mutant mice deficient in germ line G9a show a large loss of mature gametes (11). In addition, G9a facilitates increased global levels of di-methyl histone H3 (Lys9) during hypoxic stress and increased G9a expression is associated with hepatocelluar carcinoma (12,13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Tyk2 is a member of the Jak family of protein tyrosine kinases. It associates with and is activated by receptors for many cytokines including IL-13, the IL-6 family, IL-10, and IFN-α and β (1-3). Following ligand binding, Tyk2 is activated by phosphorylation of Tyr1054 and/or Tyr1055 (4). Tyk2 is required for the tyrosine phosphorylation of Stat3 in the IFN-β signaling cascade (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: INDO/IDO1/indoleamine 2,3-dioxygenase (IDO) is an IFN-γ-inducible enzyme that catalyzes the rate-limiting step of tryptophan degradation (1). IDO is upregulated in many tumors and in dendritic cells in tumor-draining lymph nodes. Elevated tryptophan catabolism in these cells leads to tryptophan starvation of T cells, limiting T cell proliferation and activation (2). Therefore, IDO is considered an immunosuppresive molecule, and research studies have shown that upregulation of IDO is a mechanism of cancer immune evasion (3). The gastrointestinal stromal tumor drug, imatinib, was found to act, in part, by reducing IDO expression, resulting in increased CD8+ T cell activation and induction of apoptosis in regulatory T cells (4). In addition to its enzymatic activity, IDO was recently shown to have signaling capability through an immunoreceptor tyrosine-based inhibitory motif (ITIM) that is phosphorylated by Fyn in response to TGF-β. This leads to recruitment of SHP-1 and activation of the noncanonical NF-κB pathway (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Von Hippel-Lindau (VHL) protein is a substrate recognition component of an E3 ubiquitin ligase complex containing elongin BC (TCEB1 and TCEB2), cullin 1 (CUL1), and RING-box protein 1 (RBX1) (1,2,3). VHL protein has been shown to exist as three distinct isoforms resulting from alternatively spliced transcript variants (4). Loss of VHL protein function results in a dominantly inherited familial cancer syndrome that manifests as angiomas of the retina, hemangioblastomas of the central nervous system, renal clear-cell carcinomas, and pheochromocytomas (4). Under normoxic conditions, VHL directs the ubiquitylation and subsequent proteosomal degradation of the hypoxia inducible factor 1α (HIF-1α), maintaining very low levels of HIF-1α in the cell. Cellular exposure to hypoxic conditions, or loss of VHL protein function, results in increased HIF-1α protein levels and increased expression of HIF-induced gene products, many of which are angiogenesis factors such as vascular endothelial growth factor (VEGF). Thus, loss of VHL protein function is believed to contribute to the formation of highly vascular neoplasias (4). In addition to HIF-1α, VHL is known to regulate the ubiquitylation of several other proteins, including tat-binding protein 1 (TBP-1), the atypical protein kinase C lambda (aPKC), and two subunits of the multiprotein RNA Polymerase II complex (RPB1 and RPB7) (5,6,7,8). Interactions with elongin BC, RPB1, RPB7 and the pVHL-associated KRAB-A domain containing protein (VHLaK) suggest that VHL may also play a more direct role in transcriptional repression.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cold-induced RNA-binding protein (CIRBP) is a 172-residue, multifunctional sensor protein that was first isolated as a protein induced in mouse fibroblasts cultured at 32ºC (1). Conversely, CIRBP expression decreases in cells or tissues subjected to increased temperature (2). The CIRBP protein is composed of an amino-terminal RNA-binding domain and a carboxyl-terminal, glycine-rich domain (1). Stressful stimuli, such as hypoxia, heat shock, osmotic shock, or oxidative conditions, lead to translocation of CIRBP from the nucleus to cytoplasmic stress granules through a mechanism involving CIRBP methylation-dependent nuclear export (3). CIRBP plays a role in regulating apoptosis and preserving the stemness of neural stem cells at moderately low temperatures (4). Research studies demonstrate that CIRBP contributes to the regulation of circadian rhythm through post-translational modulation of CLOCK expression (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Androgen receptor (AR), a zinc finger transcription factor belonging to the nuclear receptor superfamily, is activated by phosphorylation and dimerization upon ligand binding (1). This promotes nuclear localization and binding of AR to androgen response elements in androgen target genes. Research studies have shown that AR plays a crucial role in several stages of male development and the progression of prostate cancer (2,3).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated α-Smooth Muscle Actin (D4K9N) XP® Rabbit mAb #19245.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Actin proteins are major components of the eukaryotic cytoskeleton. At least six vertebrate actin isoforms have been identified. The cytoplasmic β- and γ-actin proteins are referred to as “non-muscle” actin proteins as they are predominantly expressed in non-muscle cells where they control cell structure and motility (1). The α-cardiac and α-skeletal actin proteins are expressed in striated cardiac and skeletal muscles, respectively. The smooth muscle α-actin and γ-actin proteins are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. The α-smooth muscle actin (ACTA2) is also known as aortic smooth muscle actin. These actin isoforms regulate the contractile potential of muscle cells (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GIRK2 is a member of G protein-coupled inwardly rectifying potassium channel family proteins (GIRKs). GIRK family proteins allow potassium to flow into the cell and therefore control cellular excitability in the central nervous system, heart, and pancreas (1-4). Activation of most GIRK channels requires heterologous subunit assembly and the presence of ATP (5-7). GIRK2 is abundantly expressed in the brain, where it is involved in pain perception. It is also required for peripheral opioid-mediated analgesia (8). Additionally GIRK2 localizes to pancreatic β cells and regulates insulin secretion (9,10). Mutations in the KCNJ6 gene encoding GIRK2 are associated with Keppen-Lubinsky Syndrome, a rare disease characterized by severe developmental delay, facial dysmorphism, and intellectual disability (11).

The Notch Activated Targets Antibody Sampler Kit provides an economical means of detecting target proteins of activated Notch. The kit contains enough primary antibody to perform four western blot experiments per primary antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation, Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.