Microsize antibodies for $99 | Learn More >>

Product listing: Tissue Factor/CD142 Antibody, UniProt ID P13726 #47769 to Cavin-1 (D8C1D) Rabbit mAb, UniProt ID Q6NZI2 #46379

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Tissue Factor (TF)/CD142 (Coagulation factor III/Thromboplastin) is a type-I transmembrane glycoprotein that serves as the cell surface receptor and cofactor for blood coagulation factors VII and VIIa, and thus plays a central role in hemostasis and thrombosis (1). The TF:VIIa receptor-ligand complex is widely recognized as the initiator of the extrinsic blood coagulation protease cascade, which ultimately leads to the generation of fibrin and thrombin (1). A member of the type-II cytokine receptor superfamily, TF has also been shown to engage the PI3K (2) and MAPK (3) signaling cascades upon binding to factor VIIa in order to drive cellular responses such as cell migration, growth, and proliferation. Although the function of TF under physiologic conditions is to coordinate blood clotting in response to tissue damage, TF is implicated in pathologic conditions such as tumorigenesis. Indeed, TF is aberrantly expressed in colorectal cancer, breast cancer, pancreatic cancer, and glioblastoma multiforme (4). It has been shown to promote tumor angiogenesis, tumor growth, metastasis, and venous thrombosis (5). Given that TF overexpression is associated with numerous types of solid tumors, it has garnered much attention as a potential therapeutic target.

The Tricarboxylic Acid Cycle Sampler Kit provides an economical means of detecting select components involved in tricarboxylic acid cycle. The kit contains enough primary antibodies to perform at least two western blot experiments per antibody.

Background: The tricarboxylic acid (TCA) cycle includes various enzymatic reactions that constitute a key part of cellular aerobic respiration. The transport of the glycolytic end product pyruvate into mitochondria and the decarboxylation of pyruvate in the TCA cycle generate energy through oxidative phosphorylation under aerobic conditions (1,2). Two inner mitochondrial membrane proteins, mitochondrial pyruvate carrier 1 (MPC1) and mitochondrial pyruvate carrier 2 (MPC2), form a 150 kDa complex and are essential proteins in the facilitated transport of pyruvate into mitochondria (1,2). Citrate synthase catalyzes the first and rate-limiting reaction of the TCA cycle (3). Mitochondrial aconitase 2 (ACO2) catalyzes the conversion of citrate to isocitrate via cis-aconitate (4). IDH1 and IDH2 are two of the three isocitrate dehydrogenases that catalyze oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) (5). IDH1 functions as a tumor suppressor in the cytoplasm and peroxisomes, whereas IDH2 is in mitochondria and is involved in the TCA cycle (5). Mutations in IDH2 have also been identified in malignant gliomas (6). Dihydrolipoamide succinyltransferase (DLST) is a subunit of the α-ketoglutarate dehydrogenase complex, a key enzymatic complex in the TCA cycle (7). Succinate dehydrogenase subunit A (SDHA) is a component of the TCA cycle and the electron transport chain and is involved in the oxidation of succinate (8). Fumarase catalyzes the conversion of fumarate to malate (9). Fumarase deficiency leads to the accumulation of fumarate, an oncometabolite that has been shown to promote epithelial-to-mesenchymal-transition (EMT), a developmental process that has been implicated in oncogenesis (10).

$561
96 assays
1 Kit
Next generation sequencing (NG-seq) is a high throughput method that can be used downstream of chromatin immunoprecipitation (ChIP) assays to identify and quantify target DNA enrichment across the entire genome. SimpleChIP® ChIP-seq Multiplex Oligos for Illumina® (Dual Index Primers) contains adaptors and primers that are ideally suited for multiplex sample preparation for NG-seq on the Illumina® platform. This kit can be used to generate up to 96 distinct, barcoded ChIP-seq DNA libraries that can be combined into a single sequencing reaction. This product provides enough reagents to support up to 96 DNA sequencing libraries, and must be used in combination with SimpleChIP® ChIP-seq DNA Library Prep Kit for Illumina® #56795.This product is compatible with SimpleChIP® Enzymatic ChIP Kit (Magnetic Beads) #9003, SimpleChIP® Plus Enzymatic ChIP Kit (Magnetic Beads) #9005, and SimpleChIP® Plus Sonication ChIP kit #56383. This product is not compatible with SimpleChIP® Enzymatic Chromatin IP Kit (Agarose Beads) #9002 and SimpleChIP® Plus Enzymatic Chromatin IP Kit (Agarose Beads) #9004 because agarose beads are blocked with sonicated salmon sperm DNA, which will contaminate DNA library preps and NG-seq.
REACTIVITY
All Species Expected

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to identify multiple proteins associated with a specific region of the genome, or the opposite, to identify the many regions of the genome bound by a particular protein (3-6). It can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors and DNA repair proteins. When performing the ChIP assay, cells or tissues are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. The chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or Quantitative Real-Time PCR can be used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing, or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8).

$336
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PerCP and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Synapse-associated protein 102 (SAP102, DLG3) belongs to the membrane-associated guanylate kinase (MAGUK) protein family and is a homolog of the Drosophila disc large (dlg) tumor suppressor protein. SAP102 consists of three PDZ domains, a Src homology 3 (SH3) domain, and a guanylate kinase (GK) domain (1). The SAP102 protein is more highly expressed in nonproliferating cells than in proliferating cells, indicating a role in the negative regulation of cell growth. SAP102 interacts with the carboxy terminus of the adenomatous polyposis coli (APC) tumor suppressor protein. Furthermore, SAP102 associates with PSD95 in the presence of calcium while the SH3 domain of SAP102 binds calmodulin (2,3). All three PDZ domains of SAP102 participate in binding to the NMDA receptor, interacting specifically with the carboxy-terminal domain of the N-methyl-D-aspartate receptor 2B (NR2B). This SAP102-NR2B interaction may facilitate AMPA receptor withdrawal from the postsynaptic membrane by inhibiting the Erk/MAPK pathway (1,4). Neuronal SAP102 is concentrated at dendritic shafts and spines, axons, and synaptic junctions. At excitatory synapses, SAP102 is involved in NMDA receptor clustering and immobilization and links NMDA receptors to the submembraneous cytomatrix (4). SAP102 and the NMDA receptor function together to mediate plasticity, behavior, and signal transduction (1). A nonsyndromic form of X-linked mental retardation is caused by loss-of-function mutations to the SAP102 gene. The SAP102 protein may be involved in autism since MAGUK proteins in the NMDA receptor complex bind directly to the autism susceptibility gene, neuroligin (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: 4F2hc is a transmembrane protein that belongs to the solute carrier family. 4F2hc forms heterodimeric complexes with various amino acid transporters such as LAT1 and LAT2 and regulates uptake of amino acids (1-5). 4F2hc is one of the earliest expressed antigens on the surface of activated human lymphocytes (6), hence it is also named CD98. 4F2hc is expressed in all cell types with the exception of platelets, and is expressed at highest levels in the tubules of the kidney and the gastrointestinal tract (7,8). It is localized at the plasma membrane when associated with LAT1 or LAT2 (9) and at the apical membrane of placenta (10). Research studies have shown that 4F2hc is highly expressed in various tumors including glioma (11), ovarian cancer (12), and astrocytomas (13), and it has been implicated in tumor progression and correlated with poor outcome in patients with pulmonary neuroendocrine tumors (14). 4F2hc is also involved in integrin trafficking through association with β1 and β4 integrins, and regulates keratinocyte adhesion and differentiation (15).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated GFAP (D1F4Q) XP® Rabbit mAb #12389.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: CELSR2 (cadherin EGF LAG seven-pass G-type receptor, also known as flamingo homolog 3 or epidermal growth factor-like protein 2) is a member of the flamingo subfamily of non-classical cadherins, part of the cadherin superfamily. CELSR2 is a 7-transmembrane helix receptor that contains nine cadherin-like domains, seven EGF-like repeats, and 2 laminin A G-type repeats (1). It shares structural characteristics of both an adhesion molecule and a G protein-coupled receptor, suggesting putatives roles in both cell-cell adhesion and juxtacrine signaling. It's function has been associated with dendrite morphogenesis (2), neural plate anterior-posterior pattern formation (3), and regulation of transcription via the Wnt signaling pathway (4). In a loss-of-function mouse model, Celsr2 deletion resulted in defects in the planar organization of ependymal cilia, leading to defective cerebrospinal fluid dynamics and hydrocephalus (5). In humans, SNPs in the CELSR2 gene cluster on chromosome 1 have been associated with enhanced risk of coronary artery disease (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Adenylyl cyclase-associated protein 1 (CAP1) is a widely expressed actin regulatory protein that plays a role in adhesion through its interactions with talin1 and FAK (1). High CAP1 expression is associated with metastasis in hepatocellular carcinoma (2), and esophageal squamous cell carcinoma (3). Research studies also show that CAP1 expression in human epithelial ovarian cancer correlates with proliferation, histological grade, and prognosis (4).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Glycogen is a polysaccharide of glucose and serves as an energy storage in mammalian muscle and liver (1). Glycogen synthase catalyzes the rate-limiting step of glycogen biosynthesis and has two major isoforms in mammals -- muscle isoform (GYS1) and liver isoform (GYS2) respectively (1). Glycogen synthase kinase-3α (GSK-3α) and glycogen synthase kinase-3β (GSK-3β) phosphorylate glycogen synthase at multiple sites in its C-terminus (Ser641, Ser645, Ser649 and Ser653) inhibiting its activity (2, 3). Hypoxia alters glycogen metabolism including temporal changes of GYS1 expression and phosphorylation in cancer cells, suggesting the role of metabolic reprogramming of glycogen metabolism in cancer growth (1).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser109, Ser127) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Mono-Methyl-Histone H3 (Lys36) (D9J1D) Rabbit mAb #14111.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: MYST1, also known as mammalian male absent on the first (MOF) and lysine acetyltransferase 8 (KAT8), is a member of the MYST (MOZ, YBF2, SAS2 and Tip60) family of histone acetyltransferases (1,2). As the catalytic subunit of two different histone acetyltransferase complexes, MSL and NSL, MYST1 is responsible for the majority of histone H4 lysine 16 acetylation in the cell. MYST1 also acetylates p53 on lysine 120 and is important for activation of pro-apoptotic genes (1,2). As a component of the MSL complex, MYST1 associates with MSL1, MSL2L1, and MSL3L1, and specifically acetylates histone H4 on lysine 16 (3-5). As part of the NSL complex, MYST1 associates with the MLL1 histone methyltransferase complex containing MLL1/KMT2A, ASH2L, HCFC1, WDR5 and RBBP5, and shows broader acetyltransferase activity for histone H4 on lysines 5, 8, and 16 (3-5). MYST1 plays a critical role in the regulation of transcription, DNA repair, autophagy, apoptosis, and emybryonic stem cell pluripotency and differentiation (1,2,6). Loss of MYST1 leads to a global reduction in histone H4 lysine 16 acetylation, a common hallmark found in many human cancers. A reduction of MYST1 protein levels and histone H4 lysine 16 acetylation is associated with poor prognosis in breast, renal, colorectal, gastric, and ovarian cancers (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Peroxiredoxin 2 (PRDX2, PRXII, NKEFB) is a ubiquitously expressed thioredoxin peroxidase. The enzyme catalyzes the reduction of hydrogen peroxide and organic hydroperoxides via the thioredoxin system (1). An antioxidant, PRDX2 neutralizes endogenous reactive oxygen species (ROS) and regulates cytokine-induced peroxide levels for normal cell function (2). Research studies have shown that PRDX2 plays important roles in inflammation, cancer, and natural killer (NK) cell activation (3). During cancer progression, PRDX2 is upregulated and protects cancer cells from oxidative stress-induced apoptosis (4, 5). In inflammatory diseases such as infection, myocardial infarction, and ischemia, PRDX2 not only protects (host) cells from oxidative stress-induced death, but is also released into extracellular space to trigger local inflammation and to activate NK cells for innate immune response (6, 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Nuclear respiratory factor 1 (NRF1) was identified as a transcription activator for the gene encoding cytochrome c (1). It was later found to play a role in the nuclear control of mitochondrial function (1). PGC-1 induces the expression of NRF1 and NRF2 (2). NRF1, along with the coactivator PGC-1, stimulates the promoter of mitochondrial transcription factor A, which regulates mitochondrial biogenensis and function (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TWIST1 is a basic helix-loop-helix (b-HLH) transcription factor that functions as a master regulator of embryonic morphogenesis and plays essential roles in mesenchymal differentiation and osteogenic determination (1-3). Mutations affecting the b-HLH domain of the TWIST1 gene have been associated with Saethre-Chotzen syndrome, an autosomal dominant craniosynostosis disorder causing craniofacial and limb abnormalities (4,5). TWIST1 is upregulated in various human tumors and may play a role in EMT (epithelial-mesenchymal transition) and metastasis (6,7). Upregulation of TWIST1 may contribute to resistance to Taxol and microtubule regulating drugs in tumors (8).

$263
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PerCP-Cy5.5® and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Cluster of Differentiation 4 (CD4) is a glycoprotein composed of an amino-terminal extracellular domain (four domains: D1-D4 with Ig-like structures), a transmembrane part and a short cytoplasmic tail. CD4 is expressed on the surface of T helper cells, regulatory T cells, monocytes, macrophages and dendritic cells, and plays an important role in the development and activation of T cells. On T cells, CD4 is the co-receptor for the T cell receptor (TCR), and these two distinct structures recognize the Antigen–Major Histocompatibility Complex (MHC). Specifically, the D1 domain of CD4 interacts with the β2-domain of the MHC class II molecule. CD4 ensures specificity of the TCR–antigen interaction, prolongs the contact between the T cell and the antigen presenting cell and recruits the tyrosine kinase Lck, which is essential for T cell activation (1).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Tau is a heterogeneous microtubule-associated protein that promotes and stabilizes microtubule assembly, especially in axons. Six isoforms with different amino-terminal inserts and different numbers of tandem repeats near the carboxy terminus have been identified, and tau is hyperphosphorylated at approximately 25 sites by Erk, GSK-3, and CDK5 (1,2). Phosphorylation decreases the ability of tau to bind to microtubules. Neurofibrillary tangles are a major hallmark of Alzheimer's disease; these tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. In particular, phosphorylation at Ser396 by GSK-3 or CDK5 destabilizes microtubules. Furthermore, research studies have shown that inclusions of tau are found in a number of other neurodegenerative diseases, collectively known as tauopathies (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Caspase-5 (Ich-3/ICErelIII/TY) is a member of the caspase family of cysteine proteases that play a key role in the execution of apoptosis and activation of inflammatory cytokines (1-3). Caspase-5 is widely expressed, with highest expression observed in placenta and lung (1). Interferon-γ and LPS regulate expression of caspase-5 (2,4). Members of the caspase-1 subfamily of caspases, which includes caspase-4, -5, and murine caspase-11 and -12, can induce apoptosis when over-expressed and mediate the proteolytic activation of inflammatory cytokines (5). Processing of IL-1β occurs through the activation of an inflammasome complex consisting of caspase-1, caspase-5, Pycard and NALP1 (6). Transcription factor Max, a component of the Myc/Mad/Max network, is cleaved by caspase-5 during Fas-induced apoptosis (7). Several alternative spliced variants of caspase-5 have been identified (8). Frameshift mutations of caspase-5 have been observed in leukemia, lymphoma (9), and colorectal cancers (10).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated HSP60 (D6F1) XP® Rabbit mAb #12165.
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat, Xenopus, Zebrafish

Application Methods: Western Blotting

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

The Methyl-Histone H3 (Lys36) Antibody Sampler Kit provides an economical means of detecting levels of mono-, di-, and tri-methyl histone H3 Lys36 using methyl-specific and control histone H3 antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmits TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the recepter-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Briefly, activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved SSXS motif at the carboxy-terminus of the proteins. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad, Smad4, and together the complex moves to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

The Autophagy Induction (ULK1 Complex) Antibody Sampler Kit provides an economical means of detecting target proteins in the ULK1 complex. The kit contains enough antibody to perform at least two western blot experiments per primary antibody.
$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: HSP70 and HSP90 are molecular chaperones expressed constitutively under normal conditions to maintain protein homeostasis and are induced upon environmental stress (1). Both HSP70 and HSP90 are able to interact with unfolded proteins to prevent irreversible aggregation and catalyze the refolding of their substrates in an ATP- and co-chaperone-dependent manner (1). HSP70 has a broad range of substrates including newly synthesized and denatured proteins, while HSP90 tends to have a more limited subset of substrates, most of which are signaling molecules. HSP70 and HSP90 often function collaboratively in a multi-chaperone system, which requires a minimal set of co-chaperones: HSP40, Hop, and p23 (2,3). The co-chaperones either regulate the intrinsic ATPase activity of the chaperones or recruit chaperones to specific substrates or subcellular compartments (1,4). When the ubiquitin ligase CHIP associates with the HSP70/HSP90 complex as a cofactor, the unfolded substrates are subjected to degradation by the proteasome (4). The biological functions of HSP70/HSP90 extend beyond their chaperone activity. They are essential for the maturation and inactivation of nuclear hormones and other signaling molecules (1,3). They also play a role in vesicle formation and protein trafficking (2).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immuno fluorescence analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated α-Smooth Muscle Actin (1A4) Mouse mAb #56856.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: Actin proteins are major components of the eukaryotic cytoskeleton. At least six vertebrate actin isoforms have been identified. The cytoplasmic β- and γ-actin proteins are referred to as “non-muscle” actin proteins as they are predominantly expressed in non-muscle cells where they control cell structure and motility (1). The α-cardiac and α-skeletal actin proteins are expressed in striated cardiac and skeletal muscles, respectively. The smooth muscle α-actin and γ-actin proteins are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. The α-smooth muscle actin (ACTA2) is also known as aortic smooth muscle actin. These actin isoforms regulate the contractile potential of muscle cells (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: YY1 (Yin Yang1) is a ubiquitously expressed transcription factor with fundamental roles in embryogenesis, differentiation, replication and proliferation. YY1 contains four zinc finger motifs of the Cys-Cys-His-His type and can activate different eukaryotic genes (such as CREB, c-myc, Histone H4, p53 and PARP-1) or repress different eukaryotic genes (such as α-actin, IFN-β and IFN-γ) as well as regulate some viral promoters (1). YY1 deficient embryos die approximately at the time of implantation, suggesting that YY1 has an essential role in embryonic development (2). YY1 is overexpressed in cancer cells such as prostate cancer and therefore may be considered a prognostic marker (1).

$224
10 western blots
100 µl
Anti-Blue (2D2F11) Mouse mAb is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. This product has been optimized to detect proteins labeled with remazol blue.
APPLICATIONS

Application Methods: Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Caveolae ("little caves") are 60-80 nm pits representing specialized plasma membrane domains in many cell types. The principal protein component of caveolae is caveolin, a small integral membrane protein composed of three family members, including the widely expressed caveolin-1 and -2, and the muscle-specific caveolin-3 (1). Caveolin proteins are required for caveolae formation and serve as scaffolding proteins for the recruitment of signaling proteins. Research studies in cavelolin-deficient mice implicate cavelolin proteins in several pathologies, including diabetes, cancer, cardiovascular diseases, atherosclerosis, pulmonary disease, and muscular dystrophies (2).The cavin proteins (cavin-1, -2, -3, and -4 in mammals) are a family of caveolae-associated integral membrane proteins involved in the biogenesis and stability of caveolae. Cavin proteins form homo- or hetero-oligomers whose composition is tissue-specific, which may confer distinct functions of caveolae in various tissues (3). Cavin-1 (PTRF), which is widely expressed, is required for caveolae formation and is thought to play roles in lipid metabolism, adipocyte differentiation, and IGF-1 receptor signaling (4-6). Research studies involving prostate cancer suggest that expression of cavin-1 is related to tumor progression and angiogenesis/lymphangiogenesis (7-8).