Microsize antibodies for $99 | Learn More >>

Product listing: VAMP7 (D4D5J) Rabbit mAb, UniProt ID P51809 #14811 to Phospho-SLP-76 (Tyr145) Antibody, UniProt ID Q13094 #14770

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex are integral membrane proteins involved in vesicle transport and membrane fusion that pair vesicular SNAREs (v-SNAREs) with cognate target SNARE (t-SNARE) proteins (reviewed in 1,2). Vesicle-associated membrane protein 7 (VAMP7), or tetanus neurotoxin-insensitive VAMP (TI-VAMP), is a widely expressed v-SNARE involved in exocytosis of granules and synaptic vesicles in various cell types, membrane remodeling, neurite outgrowth, lysosomal secretion, and autophagosome maturation (3). Activity of VAMP7 can be regulated by c-Src-mediated tyrosine phosphorylation, which activates VAMP7-mediated exocytosis (4). VAMP7 activity can also be regulated through interaction with the guanine nucleotide exchange factor Varp (5,6). Several research studies indicate that VAMP7 plays an important role in neurite outgrowth as well as potential neurological activities, including anxiety (7-9). VAMP7 also appears to have a key role in T-cell activation by facilitating the recruitment of vesicular Lat to the immunological synapse (10). The VAMP7 protein interacts with ATG16L, a component of the ATG5-ATG12 complex, and regulates autophagosome maturation through homotypic fusion of ATG16L1 vesicles (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Both the NEDD8 ultimate buster 1 (NUB1) and the related NUB1L isoform are interferon-inducible adaptor proteins that negatively regulate ubiquitin-like protein NEDD8 (1,2). NUB1 protein contains an amino terminal ubiquitin-like (UBL) domain and multiple carboxy terminal ubiquitin-associated (UBA) domains. The NUB1L isoform is generated by alternative splicing and contains an extra UBA domain relative to NUB1 (2). Research studies indicate that NUB1 and NUB1L non-covalently bind NEDD8 and facilitate delivery of both NEDD8 monomers and NEDD8 conjugates to the proteasome for degradation (2-5). In addition, NUB1L binds and enhances the proteasomal degradation of the FAT10 ubiquitin-like protein (6). Additional research shows that NUB1 negatively regulates cell proliferation, likely due to inhibition of NEDD8 conjugation to SCF ubiquitin ligases, which leads to inhibition of p27 and cyclin E ubiquitination (3,7). NUB1 has been identified as a putative therapeutic target in Huntington's disease as NUB1 promotes a decrease in levels of mutant HTT protein (8).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur. For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=proteomics.

Background: Methylation of lysine residues is a common regulatory posttranslational modification (PTM) that results in the mono-, di-, or tri-methylation of lysine at ε-amine groups by protein lysine methyltransferases (PKMTs). Two PKMT groups are recognized based on structure and catalytic mechanism: class I methyltransferases or seven β strand enzymes, and SET domain-containing class V methyltransferases. Both use the methyl donor S-adenosyl-L-methionine to methylate histone and non-histone proteins. Class I methyltransferases methylate amino acids, DNA, and RNA (1,2). Six methyl-lysine-interacting protein families are distinguished based on binding domains: MBT, PHD finger, Tudor, PWWP, WD40 repeat, and chromodomains. Many of these display differential binding preferences based on lysine methylation state (3). KDM1 subfamily lysine demethylases catalyze demethylation of mono- and di-methyl lysines, while 2-oxoglutarate-dependent JmjC (KDM2-7) subfamily enzymes also modify tri-methyl lysine residues (4).Most PKMT substrates are histone proteins and transcription factors, emphasizing the importance of lysine methylation in regulating chromatin structure and gene expression. Lys9 of histone H3 is mono- or di-methylated by G9A/GLP and tri-methylated by SETDB1 to activate transcription. JHDM3A-mediated demethylation of the same residue creates mono-methyl Lys9 and inhibits gene transcription (5). Tumor suppressor p53 is regulated by methylation of at least four sites. p53-mediated transcription is repressed following mono-methylation of p53 at Lys370 by SMYD2; di-methylation at the same residue further inhibits p53 by preventing association with 53BP1. Concomitant di-methylation at Lys382 inhibits p53 ubiquitination following DNA damage. Mono-methylation at Lys382 by SET8 suppresses p53 transcriptional activity, while SET7/9 mono-methylation at Lys372 inhibits SMYD2 methylation at Lys370 and stabilizes the p53 protein. Di-methylation at Lys373 by G9A/GLP inhibits p53-mediated apoptosis and correlates with tri-methylation of histone H3 Lys9 at the p21 promoter (1,6). Overexpression of PKMTs is associated with multiple forms of human cancer, which has generated tremendous interest in targeting protein lysine methyltransferases in drug discovery research.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Eukaryotic cell proliferation depends strictly upon the E3 ubiquitin ligase activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. The APC/C complex promotes the assembly of polyubiquitin chains on substrate proteins in order to target these proteins for degradation by the 26S proteasome (1,2). The vertebrate APC/C complex consists of as many as 15 subunits, including multiple scaffold proteins, two catalytic subunits (APC2, APC11), and a number of proteins responsible for substrate recognition (3). All E3 enzymes, including APC/C, utilize ubiquitin residues activated by E1 enzymes and transferred to E2 enzymes. Research studies indicate that APC/C interacts with the E2 enzymes UBE2S and UBE2C via the RING-finger domain-containing subunit APC11 (4-6). APC/C function relies on multiple cofactors, including an APC/C coactivator formed by the cell division control protein 20 homolog (CDC20) and Cdh1/FZR1. The CDC20/Cdh1 coactivator is responsible for recognition of APC/C substrates through interaction with specific D-box and KEN-box recognition elements within these substrates (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein phosphatase 2A (PP2A) is a trimeric protein phosphatase and tumor suppressor that regulates the phosphorylation status of a wide variety of phosphoproteins. PP2A targets include many that play a role in the maintenance and progression of cancer (1). The cancerous inhibitor of protein phosphatase 2A (CIP2A) is a single pass membrane protein that binds the PP2A catalytic subunit to inhibit PP2A phosphatase activity (2). CIP2A is normally expressed at low levels in normal cells and tissues, but is elevated in human malignancies where it is thought to be oncogenic. Research studies demonstrate aberrant CIP2A expression in multiple tumor types, including those derived from the head and neck, liver, colon, lung, osteosarcoma, pancreatic, breast, and myeloid cancers (reviewed in 3). This evidence suggests that CIP2A interacts with many proteins that may play a role in cancer maintenance and progression (3). Additional studies indicate that CIP2A inhibits PP2A-mediated dephosphorylation of the proto-oncogene Myc at Ser64, which stabilizes and prevents proteolytic degradation of the Myc transcription factor (4).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The lipolysis-stimulated lipoprotein receptor (LSR, LISCH) is an immunoglobulin superfamily member and single pass transmembrane protein that binds the apolipoprotein B (ApoB) and apolipoprotein E (ApoE) lipoproteins (1). LSR is responsible for the cellular uptake of triacylglyceride-rich lipoproteins and supports lipid distribution between the liver and peripheral tissues (1,2). The LSR protein is expressed at the cell membrane as a heterodimer consisting of α and β subunits, which are produced as alternative splice variants from a single gene (3). Research studies suggest that LSR acts as the host cell surface receptor for multiple Clostridium toxins (4) and participates in the formation of tricellular tight junctions in epithelial cells (5). Additional studies demonstrate that LSR expression is up-regulated in several cancer types, including breast, bladder, and colorectal cancer, which could lead to pro-tumorigenic changes in metabolism (6-8).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with extracellular environment (inside-out signaling) (1,2).Integrin β4 pairs with integrin α6 on the cell surface membrane to form the integrin α6β4 heterodimer, an important laminin receptor that is essential for hemidesmosome formation and the support of stable adhesions between basal epithelial cells and the basement membrane (4,5). Integrin β4 is an important component in several growth factor induced signaling pathways that are involved in tumorigenesis and invasive cell growth (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: Mutations in Doublecortin cause Lissencephaly (smooth brain), a neuronal migration disorder characterized by epilepsy and mental retardation (1). Doublecortin is a microtubule associated protein that stabilizes and bundles microtubules. A conserved doublecortin domain mediates the interaction with microtubules, and interestingly most missense mutations cluster in this domain (2). Kinases JNK, CDK5 and PKA phosphorylate doublecortin. JNK phosphorylates Thr321, Thr331 and Ser334 while PKA phosphorylates Ser47 and CDK5 phosphorylates Ser297 (3-5). Phosphorylation of Ser297 lowers the affinity of doublecortin to microtubules. Furthermore, mutations of Ser297 result in migration defects (5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Stat3 (D3Z2G) Rabbit mAb #12640.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Stat3 transcription factor is an important signaling molecule for many cytokines and growth factor receptors (1) and is required for murine fetal development (2). Research studies have shown that Stat3 is constitutively activated in a number of human tumors (3,4) and possesses oncogenic potential (5) and anti-apoptotic activities (3). Stat3 is activated by phosphorylation at Tyr705, which induces dimerization, nuclear translocation, and DNA binding (6,7). Transcriptional activation seems to be regulated by phosphorylation at Ser727 through the MAPK or mTOR pathways (8,9). Stat3 isoform expression appears to reflect biological function as the relative expression levels of Stat3α (86 kDa) and Stat3β (79 kDa) depend on cell type, ligand exposure, or cell maturation stage (10). It is notable that Stat3β lacks the serine phosphorylation site within the carboxy-terminal transcriptional activation domain (8).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated HER3/ErbB3 (D22C5) XP® Rabbit mAb #12708.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: HER3/ErbB3 is a member of the ErbB receptor protein tyrosine kinase family, but it lacks tyrosine kinase activity. Tyrosine phosphorylation of ErbB3 depends on its association with other ErbB tyrosine kinases. Upon ligand binding, heterodimers form between ErbB3 and other ErbB proteins, and ErbB3 is phosphorylated on tyrosine residues by the activated ErbB kinase (1,2). There are at least 9 potential tyrosine phosphorylation sites in the carboxy-terminal tail of ErbB3. These sites serve as consensus binding sites for signal transducing proteins, including Src family members, Grb2, and the p85 subunit of PI3 kinase, which mediate ErbB downstream signaling (3). Both Tyr1222 and Tyr1289 of ErbB3 reside within a YXXM motif and participate in signaling to PI3K (4).Investigators have found that ErbB3 is highly expressed in many cancer cells (5) and activation of the ErbB3/PI3K pathway is correlated with malignant phenotypes of adenocarcinomas (6). Research studies have demonstrated that in tumor development, ErbB3 may function as an oncogenic unit together with other ErbB members (e.g. ErbB2 requires ErbB3 to drive breast tumor cell proliferation) (7). Thus, investigators view inhibiting interaction between ErbB3 and ErbB tyrosine kinases as a novel strategy for anti-tumor therapy.

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (5G10) Rabbit mAb #2217.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The E3 ubiquitin-protein ligase DTX3L (BBAP) is a deltex (DTX) family ligase that binds B aggressive lymphoma 1 (BAL1) to mediate the monoubiquitination of histone H4 Lys91 in response to DNA damage (1,2). The early recruitment of poly-ADP-ribose polymerase 1 (PARP1) protein to sites of DNA damage leads to poly-ADP-ribosylation (PARylation) of multiple target proteins. This results in the subsequent recruitment of DTX3L/BAL1 through binding of the BAL macrodomain to PARylated proteins. DTX3L/BAL1 then mediates the monoubiquitination of histone H4 Lys91 that is required for subsequent methylation of histone H4 Lys20 and recruitment of p53-binding protein 1 (1-3). DTX3L and BAL1 are highly expressed in malignant B-cell lymphomas and act to confer chemotherapy-resistance by protecting cells from DNA damaging agents (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The X-linked RNA binding motif protein (RBMX, hnRNP G) is a multi-functional protein that is part of a heterogeneous nuclear ribonucleoprotein complex (1,2). This widely expressed protein is involved in the control of pre-mRNA splicing as part of the spliceosome. RBMX is important for the alternative splicing of many pre-mRNAs, including those that encode for dystrophin, tropomyosin, and survival motor neuron protein (SMN) in skeletal muscle and cardiac muscle (3,4). The RBMX protein is essential for the maintenance of proper sister chromatid cohesion prior to sister chromosome segregation during mitosis (5). Research studies show that RBMX accumulates at sites of DNA damage and that the presence of RBMX is required for homologous recombination repair (6).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated iNOS (D6B6S) Rabbit mAb #13120.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: Nitric Oxide Synthase (NOS) catalyzes the formation of nitric oxide (NO) and citruline from L-arginine, oxygen and cofactors. Three family members have been characterized: neuronal NOS (nNOS), which is found primarily in neuronal tissue; inducible NOS (iNOS), which is induced by interferon gamma and lipopolysaccharides in the kidney and cardiovascular system; and endothelial NOS (eNOS), which is expressed in blood vessels (1). NO is a messenger molecule with diverse functions throughout the body including the maintenance of vascular integrity, homeostasis, synaptic plasticity, long-term potentiation, learning, and memory (2,3).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Zap-70 (Tyr319)/Syk (Tyr352) (65E4) Rabbit mAb #2717.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The Syk family protein tyrosine kinase Zap-70 is expressed in T and NK cells and plays a critical role in mediating T cell activation in response to T cell receptor (TCR) engagement (1). Following TCR engagement, Zap-70 is rapidly phosphorylated on several tyrosine residues through autophosphorylation and transphosphorylation by the Src family tyrosine kinase Lck (2-6). Tyrosine phosphorylation correlates with increased Zap-70 kinase activity and downstream signaling events. Expression of Zap-70 is correlated with disease progression and survival in patients with chronic lymphocytic leukemia (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).

$489
96 assays
1 Kit
The PathScan® Total PD-L1 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of PD-L1 protein. A rabbit antibody toward intracellular PD-L1 has been coated onto the microwells. After incubation with cell lysates, PD-L1 protein is captured by the coated antibody. Following extensive washing, a mouse detection antibody toward extracellular PD-L1 is added to detect the captured PD-L1 protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for the developed color is proportional to the quantity of PD-L1 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Programmed cell death 1 ligand 1 (PD-L1, B7-H1, CD274) is a member of the B7 family of cell surface ligands that regulate T cell activation and immune responses. The PD-L1 ligand binds the PD-1 transmembrane receptor and inhibits T cell activation. PD-L1 was discovered following a search for novel B7 protein homologs and was later shown to be expressed by antigen presenting cells, activated T cells, and tissues including placenta, heart, and lung (1-3). Similar in structure to related B7 family members, PD-L1 protein contains extracellular IgV and IgC domains and a short, cytoplasmic region. Research studies demonstrate that PD-L1 is expressed in several tumor types, including melanoma, ovary, colon, lung, breast, and renal cell carcinomas (4-6). Expression of PD-L1 in cancer is associated with tumor infiltrating lymphocytes, which mediate PD-L1 expression through the release of interferon gamma (7). Additional research links PD-L1 expression to cancers associated with viral infections (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Van Gogh-like proteins (VANGL1, VANGL2) are human orthologs of Drosophila Van Gogh (Vang/Stbm), a multi-pass transmembrane protein that is required to establish cell polarity in embryonic eyes, legs, and bristles (1,2). As in Drosophila, mammalian VANGL proteins are core components of the planar cell polarity (PCP) pathway that promotes asymmetric orientation of cells across a planar surface, and drives convergence-extension movements that are critical for tissue morphogenesis (3). Mutations in the human VANGL1 gene have been identified in patients diagnosed with neural tube defects (e.g., spina bifida), providing evidence that VANGL1 plays a role in human embryonic morphogenesis (4,5). These findings are supported by genetic studies in mice, where mutations in both Vangl1 and Vangl2 result in neural tube defects (6,7). A possible role for VANGL in tumor progression is suggested by an increased expression of VANGL1 mRNA in breast cancer patients with an elevated risk of relapse (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Cystathionine beta-synthase (CBS) is a key enzyme involved in sulfur amino acid metabolism because it catalyzes the formation of cystathionine from serine and homocysteine (1,2). The CBS protein contains a heme-binding domain that modulates enzyme activity by sensing redox changes or carbon monoxide binding (1). S-adenosylmethionine binds the carboxyl-terminal CBS domain to allosterically regulate CBS catalytic activity (3,4). In addition to catalyzing cystathionine formation, CBS also catalyzes the generation of hydrogen sulfide, a neuromodulator in the brain, through alternative reactions (5,6). Mutations in the corresponding CBS gene result in homocystinuria, an autosomal recessive disorder characterized by abnormal sulfur metabolism, mental retardation, eye anomalies, and vascular disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Fatty acid binding proteins (FABPs) are cytoplasmic lipid chaperones that bind fatty acids and lipids for transport to various cellular components (1,2). Research studies demonstrate differential FABP expression in several types of tumors and their normal-cell counterparts (3). Fatty acid binding protein 3 (FABP3) is predominantly expressed in heart, skeletal muscle, brain, and mammary gland (4). FABP3 may play a role in supplying energy to the heart and other tissues (5). The release of FABP3 from the heart upon infarction is used as a serum marker for myocardial stress and cardiotoxicity (6). Additional studies suggest that FABP3 is a potential tumor suppressor in breast cancer (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Transcription factor E3 (TFE3) is a member of a family of basic helix-loop-helix leucine zipper transcription factors that includes MITF, TFEB, TFE3, and TFEC. Members of this family form heterodimers with each other, bind the same DNA sequences, and undergo the same types of post-translational modifications, including sumoylation (1). Research studies indicate that TFE3 and other family members play roles in development, organelle biogenesis, nutrient sensing, autophagy, and energy metabolism (2,3). Additional studies report that TFE3 controls the gate for pluripotent cells to exit the state of pluripotency prior to differentiation (4). Translocations involving the TFE3 gene region have been identified in a number of tumors, including sporadic renal cell tumors. Several specific translocations that result in kidney cancer and involve the TFE3 gene have been described and characterized in detail (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Synoviolin-1 (SYVN1/HRD1) is a RING-type E3 ubiquitin-protein ligase and major component of the endoplasmic reticulum (ER) quality control system that is involved in the ubiquitin-dependent degradation of misfolded proteins (1). SYVN1 is a multispanning ER membrane protein whose expression is upregulated at the protein level under conditions that promote ER stress (1-4). Research studies have shown that SYVN1 is an anti-apoptotic factor that is implicated in the pathogenesis of arthropathy by promoting synovial hyperplasia (5). Furthermore, gene-targeting studies have demonstrated that SYVN1 expression is indispensable for embryogenesis (6).

$232
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated PD-L1 (E1L3N®) XP® Rabbit mAb #13684.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Programmed cell death 1 ligand 1 (PD-L1, B7-H1, CD274) is a member of the B7 family of cell surface ligands that regulate T cell activation and immune responses. The PD-L1 ligand binds the PD-1 transmembrane receptor and inhibits T cell activation. PD-L1 was discovered following a search for novel B7 protein homologs and was later shown to be expressed by antigen presenting cells, activated T cells, and tissues including placenta, heart, and lung (1-3). Similar in structure to related B7 family members, PD-L1 protein contains extracellular IgV and IgC domains and a short, cytoplasmic region. Research studies demonstrate that PD-L1 is expressed in several tumor types, including melanoma, ovary, colon, lung, breast, and renal cell carcinomas (4-6). Expression of PD-L1 in cancer is associated with tumor infiltrating lymphocytes, which mediate PD-L1 expression through the release of interferon gamma (7). Additional research links PD-L1 expression to cancers associated with viral infections (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CEACAM1 (also known as C-CAM and CD66a) is a member of CEA-related cell-adhesion molecule (CEACAM) subfamily of the carcinoembryonic antigen (CEA) family (1). CEACAM1 is expressed by certain epithelial, endothelial, lymphoid, and myeloid cells. Human CEACAM1 has many different splice variants; the abundance of CEACAM1 and the relative ratio of the different isoforms varies markedly among cell types and may be regulated in a context-dependent fashion. The isoforms with long (L) and short (S) cytoplasmic tails have different signaling properties. Notably, L isoforms contain a functional ITIM (immunoreceptor tyrosine-based inhibitory motif) and several serine and threonine residues that could serve as potential phosphorylation targets. The extracellular domain of CEACAM1 is heavily glycosylated, making its apparent molecular weight during electrophoresis much larger than its predicted size (57.6 kDa) (2). CEACAM1 mediates intercellular adhesion through homo- and heterophilic interaction with other members of the CEACAM family. Studies indicate that CEACAM1 plays important roles in angiogenesis, neovascularization, insulin signaling, T cell signaling, and tumorigenesis (3-8). In addition, CEACAM1 can function as a receptor for several microbial pathogens (9,10).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is a hematopoietic adaptor protein that is important in multiple biochemical signaling pathways and necessary for T cell development and activation (1). ZAP-70 phosphorylates SLP-76 and LAT as a result of TCR ligation. SLP-76 has amino-terminal tyrosine residues followed by a proline rich domain and a carboxy-terminal SH2 domain. Phosphorylation of Tyr113 and Tyr128 result in recruitment of the GEF Vav and the adapter protein Nck (2). TCR ligation also leads to phosphorylation of Tyr145, which mediates an association between SLP-76 and Itk, which is accomplished in part via the proline rich domain of SLP-76 and the SH3 domain of ITK (3). Furthermore, the proline rich domain of SLP-76 binds to the SH3 domains of Grb2-like adapter Gads (3,4). In resting cells, SLP-76 is predominantly in the cytosol. Upon TCR ligation, SLP-76 translocates to the plasma membrane and promotes the assembly of a multi-protein signaling complex that includes Vav, Nck, Itk and PLCγ1 (1). The expression of SLP-76 is tightly regulated; the protein is detected at very early stages of thymocyte development, increases as thymocyte maturation progresses, and is reduced as cells mature to CD4+ CD8+ double-positive thymocytes (5).