Microsize antibodies for $99 | Learn More >>

Product listing: Myeloperoxidase (E1E7I) XP® Rabbit mAb, UniProt ID P05164 #14569 to PTMScan® Pilot Ubiquitin Remnant Motif (K-ε-GG) Kit #14482

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Myeloperoxidase (MPO) is a peroxidase enzyme that is part of the host defense system of polymorphonuclear leukocytes (reviewed in 1). The gene for MPO was cloned independently from several laboratories (2-5). A decrease in MPO expression was noticed upon differentiation of HL-60 cells (5). MPO catalyzes the reaction of hydrogen peroxide and chloride (or other halides) to produce hypochlorous acid and other potent antimicrobial oxidants. Knockout mice of MPO are impaired in clearing select microbial infections (6). Processing of mature MPO from an initial 80-90 kDa translation product involves insertion of a heme moiety, glycosylation, and proteolytic cleavage. The mature protein is a tetramer of two heavy chains (60 kDa) and two light chains (12 kDa). It is abundantly expressed in neutrophils and monocytes and secreted during their activation. Heightened MPO levels have been associated with tissue damage and a number of pathological conditions (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L5 (RPL5) is one of several proteins that comprise the 60S ribosomal subunit. RPL5 binds 5S rRNA and the nucleolar RPL11 protein to form the 5S ribonucleoprotein particle (RNP) that is incorporated into the large 60S ribosomal subunit (1). An RP-MDM2-p53 protein complex that contains ribosomal proteins RPL5, RPL11, and RPL23 acts as a nucleolar stress sensor that binds and inhibits MDM2 ubiquitin ligase activity and enhances p53-mediated transcriptional activity (2,3). RPL5 cooperates with RPL11 to influence ribosome biogenesis through regulating expression of the transcription factor c-Myc, which acts as the master regulator of ribosome biogenesis (4). Mutations in the corresponding RPL5 gene are associated with Diamond-Blackfan anemia, which is a form of red blood cell aplasia, and some cases of pediatric T-cell acute lymphoblastic leukemia (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The REST corepressor 1 (CoREST, RCOR1) was first identified as a repressor element 1-silencing transcription factor (REST) corepressor (1,2). The CoREST protein is encoded by the RCOR1 gene and is part of a large, multi-subunit repressor complex that includes the histone demethylase LSD1 and histone deacetylases (HDAC) 1 and 2 (1,3-5). CoREST binds the carboxy-terminal domain of REST and is recruited to repress neuronal gene transcription in non-neuronal and neural stem cells (1,6,7). The REST corepressor is essential for repressor complex-nucleosome interaction, the subsequent deacetylation of histone amino-terminal tails by HDAC1/2, and the LSD1 methylation of histone H3 at Lys4 (8-10). The targeting of CoREST to genes that are not repressed by REST suggests a role apart from neural cell fate regulation. These include growth factor independent (Gfi) target genes during erythroid differentiation, targets of carboxy-terminal binding protein (CtBP), and heat shock and pro-inflammatory response genes (11-15).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-cdc2 (Tyr15) (10A11) Rabbit mAb #4539.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The entry of eukaryotic cells into mitosis is regulated by cdc2 kinase activation, a process controlled at several steps including cyclin binding and phosphorylation of cdc2 at Thr161 (1). However, the critical regulatory step in activating cdc2 during progression into mitosis appears to be dephosphorylation of cdc2 at Thr14 and Tyr15 (2). Phosphorylation at Thr14 and Tyr15, resulting in inhibition of cdc2, can be carried out by Wee1 and Myt1 protein kinases (3,4). The cdc25 phosphatase may be responsible for removal of phosphates at Thr14 and Tyr15 and subsequent activation of cdc2 (1,5).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-EGF Receptor (Tyr1068) (D7A5) XP® Rabbit mAb #3777.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Phospholamban (PLN) was identified as a major phosphoprotein component of the sarcoplasmic reticulum (SR) (1). Its name, "lamban", is derived from the greek word "lambano" meaning "to receive", so named due to the fact that phospholamban is heavily phosphorylated on serine and threonine residues in response to cardiac stimulation (1). Although originally thought to be a single 20-25 kDa protein due to its electrophoretic mobility on SDS-PAGE, PLN is actually a 52 amino acid, 6 kDa, membrane-spanning protein capable of forming stable homooligomers, even in the presence of SDS (2). Despite very high expression in cardiac tissue, phospholamban is also expressed in skeletal and smooth muscle (3). Localization of PLN is limited to the SR, where it serves as a regulator of the sarco-endoplasmic reticulum calcium ATPase, SERCA (4). PLN binds directly to SERCA and effectively lowers its affinity for calcium, thus reducing calcium transport into the SR. Phosphorylation of PLN at Ser16 by Protein Kinase A or myotonic dystrophy protein kinase and/or phosphorylation at Thr17 by Ca2+/calmodulin-dependent protein kinase results in release of PLN from SERCA, relief of this inhibition, and increased calcium uptake by the SR (reviewed in 5,6). It has long been held that phosphorylation at Ser16 and Thr17 occurs sequentially, but increasing evidence suggests that phosphorylation, especially at Thr17, may be differentially regulated (reviewed in 7,8).Rodent models of heart failure have shown that the expression level and degree of phosphorylation of PLN are critical in modulating calcium flux and contractility (reviewed in 9-11). Deletion or decreased expression of PLN promotes increased calcium flux and increased cardiac contractility, whereas overexpression of PLN results in sequestration of SERCA, decreased calcium flux, reduced contractility, and rescue of cardiac dysfunction and failure in mouse models of hypertension and cardiomyopathy (reviewed in 10). Distinct mutations in PLN have been detected in humans, resulting either in decreased or no expression of PLN protein (12,13) or binding defects between PLN, SERCA and/or regulatory proteins (14,15), both of which result in cardiac myopathy and heart failure. Interestingly, while the human phenotype of most PLN defects mimic those seen in rodent and vice versa, there are some instances where the type and severity of cardiac disease resulting from PLN mutations in rodent and human differ, making a consensus mechanism elusive.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Synaptotagmin 1 (SYT1) is an integral membrane protein found in synaptic vesicles thought to play a role in vesicle trafficking and exocytosis (1). Individual SYT1 proteins are composed of an amino-terminal transmembrane region, a central linker region and a pair of carboxy-terminal C2 domains responsible for binding Ca2+ (2). The C2 domains appear to be functionally distinct, with the C2A domain responsible for regulating synaptic vesicle fusion in a calcium-dependent manner during exocytosis while the C2B domain allows for interaction between adjacent SYT1 proteins (3). Because synaptotagmin 1 binds calcium and is found in synaptic vesicles, this integral membrane protein is thought to act as a calcium sensor in fast synaptic vesicle exocytosis. Evidence suggests possible roles in vesicle-mediated endocytosis and glucose-induced insulin secretion as well (4,5). SYT1 binds several different SNARE proteins during calcium-mediated vesicle endocytosis and an association between SYT1 and the SNARE protein SNAP-25 is thought to be a key element in vesicle-mediated exocytosis (6).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The multidrug and toxin extrusion protein 1 (MATE1, SLC47A1) is a proton-coupled, organic cation antiporter located at the apical membrane of proximal kidney epithelial cells and the canalicular membrane of hepatocytes (1). MATE1 mediates the secretion of organic cations including drugs, toxins, and endogenous metabolites, into bile and urine (2,3). Substrates of MATE1 include multiple therapeutic agents, including metformin, cisplatin, acyclovir, and cephalexin (4,5). Polymorphisms in the corresponding SLC47A1 gene may affect the rate of renal clearance of certain cationic drugs, limiting the therapeutic benefits of these agents (6). Specifically, research studies demonstrate that SLC47A1 allelic variation correlates with differences in renal clearance rates of metformin (7), which may have an effect on the therapeutic impact of this drug in individuals diagnosed with type 2 diabetes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation

Background: Cocaine- and amphetamine-regulated transcript (CART) peptides are neurotransmitters of 39 and 47 amino acids that are involved in a variety of physiological processes. The CART precursor, a polypeptide of 116 residues, requires prohormone/proprotein convertase-mediated endoproteolytic cleavage to produce the two active peptides (1). CART peptides are found in several neuroendocrine tissues such as the brain, pituitary, adrenals, and pancreas (2). Hypothalamic CART is regulated by leptin, and plays a role in appetite and feeding behavior (3). Mesolimbic CART is regulated by CREB and may play a role in drug abuse behaviors by mediating some of CREB effects (4). Pancreatic CART is found in islet endocrine cells and parasympathetic and sensory nerves. It inhibits glucose-stimulated insulin secretion and has been found to be up-regulated in beta cells in animal model of diabetes (5). A missense mutation in the corresponding CART gene can correlate with susceptibility to obesity and reduced resting energy expenditure (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Phosphatidylinositol lipids and phosphoinositides are important second messengers, their generation controlling many cellular events. Intracellular levels of these molecules are regulated by phosphoinositide kinases and phosphatases. One of the best characterized lipid kinases is phosphoinositide 3-kinase (PI3K), which is responsible for phosphorylation on the D-3 position of the inositide head group (1). This action of PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN, the well characterized partnering phosphatase, reverses this process by removing the phosphate from PI(3,4,5)P3 at the D-3 position to generate PI(4,5)P2 (1,2). Dephosphorylation on the D-5 position to generate PI(3,4)P2 occurs through the action of SHIP1 or SHIP2 (3), and dephosphorylation on the D-4 position to generate PI(3)P can occur through the action of inositol polyphosphate 4-phosphatase isoenzymes type I (INPP4a) and type II (INPP4b) (4,5). While INPP4a has been implicated in neuronal survival and megakaryocyte lineage determination (6,7), less is understood about INPP4b. It has been shown that two splice variants of INPP4b occur in mice, each showing distinct tissue distribution and subcellular localization (5,8).

The T Cell Signaling Antibody Sampler Kit provides an economical means to investigate T cell receptor signaling. The kit contains primary and secondary antibodies to perform two western blot experiments per primary antibody.

Background: When T cells encounter antigens via the T cell receptor (TCR), information about the quantity and quality of antigens is relayed to the intracellular signal transduction machinery (1). This activation process depends mainly on CD3 (Cluster of Differentiation 3), a multiunit protein complex that directly associates with the TCR α and ß chains. CD3 is composed of four polypeptides: ζ, γ, ε and δ. Each of these polypeptides contains at least one immunoreceptor tyrosine-based activation motif (ITAM) (2). The Src family kinases Lck and Fyn are recruited to the TCR complex upon stimulation and activate the downstream tyrosine kinases to initiate signaling. Phosphorylation of Lck at Tyr394 leads to an increase in Lck activity while phosphorylation of Tyr505 in the Lck carboxy-terminal tail down-regulates Lck catalytic activity (3). Zap-70 and Syk are rapidly phosphorylated on several tyrosine residues through autophosphorylation and transphosphorylation by Src family tyrosine kinases.  Activation loop phosphorylation of Zap-70 at Tyr493 and Syk at Tyr526 leads to complete activation of both kinases (4).  Subsequent phosphorylation of other tyrosine residues within the kinase interdomain B region, including Zap-70 at Tyr315 and Zap-70 at Tyr 319, create docking sites for downstream signaling molecules.  Zap-70 and Syk phosphorylate the transmembrane adaptor protein LAT at multiple, conserved tyrosine residues within SH2 binding motifs, exposing these motifs as docking sites for downstream signaling targets (5,6). The phosphorylation of LAT at Tyr171 and Tyr191 enables the binding of Grb2, Gads/SLP-76, PLCγ1, and PI3 kinase. The adapter protein SLP-76 is phosphorylated at Tyr113 and Tyr128, allowing for binding of the Grb2-like adapter Gads.  Phosphorylation of SLP-76 at Ser376 by hematopoietic progenitor kinase 1 (HPK1) induces interaction with 14-3-3ε and down-regulates TCR signaling (7,8).  Phosphoinositide-specific phospholipase PLCγ1 enzyme activity is also stimulated by Zap-70 and Syk phosphorylation on Tyr783, Tyr711, and Tyr1253, resulting in robust PI-4,5-P2 hydrolysis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Methyl-CpG-binding protein 2 (MeCP2) is the founding member of a family of methyl-CpG-binding domain (MBD) proteins that also includes MBD1, MBD2, MBD3, MBD4, MBD5 and MBD6 (1-3). Apart from MBD3, these proteins bind methylated cytosine residues in the context of the di-nucleotide 5´-CG-3´ to establish and maintain regions of transcriptionally inactive chromatin by recruiting a variety of co-repressor proteins (2). MeCP2 recruits histone deacetylases HDAC1 and HDAC2, and the DNA methyltransferase DNMT1 (4-6). MBD1 couples transcriptional silencing to DNA replication and interacts with the histone methyltransferases ESET and SUV39H1 (7,8). MBD2 and MBD3 co-purify as part of the NuRD (nucleosome remodeling and histone de-acetylation) co-repressor complex, which contains the chromatin remodeling ATPase Mi-2, HDAC1 and HDAC2 (9,10). MBD5 and MBD6 have recently been identified and little is known regarding their protein interactions. MBD proteins are associated with cancer and other diseases; MBD4 is best characterized for its role in DNA repair and MBD2 has been linked to intestinal cancer (11,12). Mutations in the MeCP2 gene cause the neurologic developmental disorder Rett Syndrome (13). MeCP2 protein levels are high in neurons, where it plays a critical role in multiple synaptic processes (14). In response to various physiological stimuli, MeCP2 is phosphorylated on Ser421 and regulates the expression of genes controlling dendritic patterning and spine morphogenesis (14). Disruption of this process in individuals with altered MeCP2 may cause the pathological changes seen in Rett Syndrome.

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Receptor autophosphorylation follows binding of the IGF-I and IGF-II ligands. Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The discoidin domain receptors (DDRs) are receptor tyrosine kinases with a discoidin homology repeat in their extracellular domains, activated by binding to extracellular matrix collagens. So far, two mammalian DDRs have been identified: DDR1 and DDR2 (1). They are widely expressed in human tissues and may have roles in smooth muscle cell-mediated collagen remodeling (2). Research studies have implicated aberrant expression and signaling of DDRs in human diseases related to increased matrix degradation and remodeling, such as cardiovascular disease, liver fibrosis, and tumor invasion (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Aromatase is a member of the cytochrome P450 superfamily of enzymes, which are monooxygenases that catalyze reactions involved in drug metabolism and cholesterol and steroid synthesis (1,2). Aromatase is responsible for the conversion of testosterone into 17-β estradiol (2). Aromatase is mainly expressed in the brain (3), ovaries (4), and placenta (5). Aromatase plays an important role in development of the central nervous system during ontogenesis (6,7), gonadal development, and sex differentiation (8,9). Research studies have suggested that inhibition of aromatase may be an effective therapeutic strategy for postmenopausal breast cancers that are estrogen receptor positive (6,10). Mutations in the corresponding aromatase gene are associated with cases of aromatase excess syndrome (AEXS) and aromatase deficiency (AROD) disorders (11-14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquilin 1 (UBQLN1) is a ubiquitously expressed, type 2 ubiquitin like (UBL) protein that contains an amino-terminal UBL domain and a carboxy-terminal Ub-associated (UBA) domain (1). Research studies demonstrate that UBQLN1 associates with poly-Ub chains through its UBA domain, while the UBL domain participates in interactions with proteasome subunits. Evidence suggests that UBQLN1 acts as a shuttling factor during endoplasmic-reticulum-associated protein degradation (ERAD) as it transports misfolded, ubiquitinated proteins from the ER to the proteasome for subsequent degradation (2-5). Additional research studies demonstrate that the UBL domain of UBQLN1 binds UIM-containing endocytic proteins and participates in the sequestration of protein aggregates during aggresome formation (6,7). UBQLN1 regulates presenilin protein levels and is localized in neurofibrillary tangles of Alzheimer's disease-affected brains (8). Polymorphisms in the corresponding UBQLN1 gene may be associated with a risk of Alzheimer's disease (9-11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: HER3/ErbB3 is a member of the ErbB receptor protein tyrosine kinase family, but it lacks tyrosine kinase activity. Tyrosine phosphorylation of ErbB3 depends on its association with other ErbB tyrosine kinases. Upon ligand binding, heterodimers form between ErbB3 and other ErbB proteins, and ErbB3 is phosphorylated on tyrosine residues by the activated ErbB kinase (1,2). There are at least 9 potential tyrosine phosphorylation sites in the carboxy-terminal tail of ErbB3. These sites serve as consensus binding sites for signal transducing proteins, including Src family members, Grb2, and the p85 subunit of PI3 kinase, which mediate ErbB downstream signaling (3). Both Tyr1222 and Tyr1289 of ErbB3 reside within a YXXM motif and participate in signaling to PI3K (4).Investigators have found that ErbB3 is highly expressed in many cancer cells (5) and activation of the ErbB3/PI3K pathway is correlated with malignant phenotypes of adenocarcinomas (6). Research studies have demonstrated that in tumor development, ErbB3 may function as an oncogenic unit together with other ErbB members (e.g. ErbB2 requires ErbB3 to drive breast tumor cell proliferation) (7). Thus, investigators view inhibiting interaction between ErbB3 and ErbB tyrosine kinases as a novel strategy for anti-tumor therapy.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: ADP-ribosylation factor GTPase activating protein 1 (ARFGAP1) is a Golgi-localized protein that regulates vesicle formation and membrane trafficking (1). ARFGAP1 initiates cargo selection and COP1 vesicle formation by stimulating GTP hydrolysis of ADP-ribosylation factor ARF1 (2). This GTPase activating protein initiates vesicle transport by coupling vesicle formation with cargo sorting (3). ARFGAP1 plays an active role in the Golgi-to-ER retrograde, intra-Golgi, and trans-Golgi trafficking networks (1). Research studies indicate that ARFGAP1 can act as a GTPase activating protein for LRRK2, a large multifunction protein whose genetic mutations are associated with Parkinson’s disease (4). ARFGAP1 regulates GTPase activity and promotes the kinase activity of LRRK2, which suggests some potential as a promising target for study of LRRK2 mediated neurodegeneration (4).

$489
96 assays
1 Kit
PathScan® Total B7-H4 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of B7-H4. A B7-H4 Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, B7-H4 protein is captured by the coated antibody. Following extensive washing, a B7-H4 Mouse Detection mAb is added to detect the captured B7-H4 protein. A HRP-linked, anti-mouse antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total B7-H4.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: B7 homolog 4 (B7-H4, VTCN1) is a member of the B7 family of cell surface ligands that regulate T cell activation and immune responses (1-3). B7-H4 protein contains two extracellular Ig-like V-type domains, a transmembrane domain, and a short, two amino acid intracellular domain (3). The B7-H4 protein is shown to inhibit T cell activation, proliferation, and cytokine production (1,4,5). Although B7-H4 mRNA is widely expressed, B7-H4 protein is restricted to antigen presenting cells and B cells (1). The B7-H4 protein is also found in several tumor types, including ovarian cancer and breast cancer (6). Research studies indicate that B7-H4 protein is present on the surface of ovarian tumor cells, and that targeted inhibition of B7-H4 using recombinant antibodies restores T cell activation pathways. These studies suggest some potential therapeutic value in blocking B7-H4 function and restoring T cell function in cancer patients (7,8).

$489
96 assays
1 Kit
PathScan® Total Ki-67 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Ki-67. A Ki-67 Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, Ki-67 protein is captured by the coated antibody. Following extensive washing, a Ki-67 Mouse Detection mAb is added to detect the captured Ki-67 protein. An HRP-linked, anti-mouse antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total Ki-67.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey

Background: Ki-67, named after the location where it was discovered (Kiel University, Germany), is a nuclear nonhistone protein (1) that is universally expressed among proliferating cells and absent in quiescent cells (2). Ki-67 detects proliferating cells in G1, S, G2, and mitosis, but not in the G0 resting phase. Research studies have shown that high levels of Ki-67 are associated with poorer breast cancer survival (3). Research studies have explored the use of Ki-67, along with other markers, as potential prognostic or predictive markers in breast cancer and other malignant diseases (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: During neurotransmission, glutamate is released from vesicles of the presynaptic cell, and glutamate receptors (e.g., NMDA Receptor, AMPA Receptor) bind glutamate for activation at the opposing postsynaptic cell. Excitatory amino acid transporters (EAATs) regulate and maintain extracellular glutamate concentrations below excitotoxic levels (1,2). In addition, glutamate transporters may limit the duration of synaptic excitation by an electrogenic process in which the transmitter is cotransported with three sodium ions and one proton, followed by countertransport of a potassium ion (1,2). Five EAATs (EAAT1-5) have been identified. EAAT1 and EAAT2 are expressed mainly in glia, while EAAT3, EAAT4, and EAAT5 are considered to be neuronal transporters (2). EAAT3 is found in the perisynaptic areas and cell bodies of glutamatergic and GABAergic neurons (3). Research studies have implicated abnormal EAAT3 expression in the pathophysiology of Schizophrenia (4,5).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/services/index.html.

Background: Acetylation of lysine, like phosphorylation of serine, threonine or tyrosine, is an important reversible modification controlling protein activity. The conserved amino-terminal domains of the four core histones (H2A, H2B, H3, and H4) contain lysines that are acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (1). Signaling resulting in acetylation/deacetylation of histones, transcription factors, and other proteins affects a diverse array of cellular processes including chromatin structure and gene activity, cell growth, differentiation, and apoptosis (2-6). Recent proteomic surveys suggest that acetylation of lysine residues may be a widespread and important form of posttranslational protein modification that affects thousands of proteins involved in control of cell cycle and metabolism, longevity, actin polymerization, and nuclear transport (7,8). The regulation of protein acetylation status is impaired in cancer and polyglutamine diseases (9), and HDACs have become promising targets for anti-cancer drugs currently in development (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: 2’-5’-oligoadenylate synthetase 1 (OAS1) is an antiviral protein induced by type 1 interferon that plays a key role in the cellular innate immune response (1). The OAS family of proteins includes OAS1, OAS2, OAS3, and OASL in humans (2). The OAS1 enzyme produces the second messenger 2’-5’-linked oligoadenylate in response to cytosolic dsRNA. These 2’-5’-linked oligoadenylates bind to the ribonuclease RNase L, which then degrades viral and cellular RNA (3). Research studies indicate that the OAS1 system inhibits protein synthesis and induces apoptosis in virally infected cells, which limits viral infection (4). Alternative splicing generates multiple isoforms of human OAS1, including p41 and the canonical p46 (5,6). Polymorphisms in the corresponding OAS1 gene have been examined for possible association with increased susceptibility to type 1 diabetes mellitus, multiple sclerosis, and infection by viral pathogens (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Enhancer of mRNA decapping 3 (EDC3) was originally identified from Saccharomyces cerevisiae as a protein essential to mRNA decapping prior to 5’-3’ mRNA degradation (1). In human cells, EDC3 is found within cytoplasmic processing (P) bodies as part of complexes that include DCP1, DCP2, EDC4/Ge-1, and DDX6/RCK (2). EDC3 and DCP2 interact with TTP, an activator of AU-rich-element (ARE)-mediated decay pathway, to promote decapping and degradation of ARE mRNA (2). In addition, research studies indicate that EDC3 may play a role in the premature termination of RNA polymerase II transcription (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic cells contain ATP-driven proton pumps known as vacuolar H+-ATPases (V-ATPases) that acidify intracellular compartments and translocate protons across the plasma membrane (1,2). Intracellular v-ATPases play an important role in endocytosis and intracellular membrane trafficking, while plasma membrane v-ATPases are important in processes such as urinary acidification and bone resorption (1,2). Vacuolar ATPase enzymes are large, heteromultimeric protein complexes with component proteins found in either the V1 peripheral domain or the V0 integral domain (2). The cytoplasmic V1 domain contains a hexamer of A and B catalytic subunits, as well as a number of other protein subunits required for ATPase assembly and ATP hydrolysis. The integral V0 v-ATPase domain exhibits protein translocase activity and is responsible for transport of protons across the membrane (2). Research studies show that the v-ATPases ATP6V0c, ATP6V0d1, ATP6V1A, ATP6V1B2, and ATP6V1D interact with the Ragulator protein complex and are essential for amino acid induced activation of mTORC1 on the surface of lysosomes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glutamatergic neurons release glutamate, the most common excitatory neurotransmitter. Their synaptic vesicles are filled with glutamate by vesicular glutamate transporters, VGLUTs (1). VGLUT1, also called solute carrier family 17 member 7 (SLC17A7), was first identified as an inorganic phosphate transporter (2). Despite the absence of homology with neurotransmitter transporters, VGLUT1 was later demonstrated to be a glutamate transporter (1) specific to glutamatergic neurons (3). Closely related to VGLUT1, VGLUT2 and VGLUT3 are also involved in glutamate uptake into synaptic vesicles, but define different neuronal subpopulations (4,5). VGLUT1 and VGLUT2 are the most abundant isoforms. VGLUT1 is expressed in the cortex, hippocampus, and cerebellar cortex, while VGLUT2 is mostly found in the thalamus (6,7). VGLUT3 is expressed in hair cells of the auditory system (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: DNA damage resulting from genotoxic stress activates cellular checkpoints that prevent or delay cell division until either damaged DNA is repaired or the cell follows an apoptotic pathway. The Rad9 homolog A (Rad9A, Rad9) protein is part of a checkpoint protein complex that acts as an early sensor of DNA damage. Together with the Hus1 and Rad1 checkpoint proteins, Rad9 forms a heterotrimeric 9-1-1 complex with a ring structure similar to the processivity factor PCNA. The 9-1-1 complex induces multiple signaling pathways, including the ATM and ATR-activated DNA repair pathways (1,2). A functional 9-1-1 complex is required for ATR-dependent S phase checkpoint signaling (3).The 9-1-1 complex interacts with DNA topoisomerase 2-binding protein 1 (TopBP1) in response to DNA damage, activating ATR and causing signal amplification through further recruitment of TopBP1 (4). The 9-1-1 complex interacts with DNA mismatch repair proteins MSH2, MSH3, and MSH6 to play a role in mismatch repair (5). During an error-free DNA damage tolerance process, the 9-1-1 complex cooperates with polyubiquitinated PCNA and Exo1 nuclease to support switching of the replicative polymerase to the undamaged template (6).Research studies indicate that the two Rad9 paralogues (Rad9A and Rad9B) can both functionally complement one another and display distinct biological functions.Specifically, Rad9B senses nucleolar stress and causes a delay in the cell cycle at G1/S phase (7).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/services/index.html.