Microsize antibodies for $99 | Learn More >>

Product listing: Hematoxylin #14166 to PHB2 (E1Z5A) Rabbit mAb, UniProt ID Q99623 #14085

$172
500 ml
Hematoxylin is a blue nuclear counterstain for use in immunohistochemical assays. It yields crisp staining detail with superior contrast when used in conjunction with SignalStain® DAB Substrate Kit #8059. It is also compatible with SignalStain® Mounting Medium #14177.
APPLICATIONS

Application Methods: Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin)

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: High mobility group protein B2 (HMGB2) belongs to a family of highly conserved proteins that contain HMG box domains (1,2). All three family members (HMGB1, HMGB2, and HMGB3) contain two HMG box domains and a C-terminal acidic domain. HMGB1 is a widely expressed and highly abundant protein (2). HMGB2 is widely expressed during embryonic development, but it is restricted to lymphoid organs and testis in adult animals (3). HMGB3 is only expressed during embryogenesis (4). While expression varies, the biochemical properties of the different family members may be indistinguishable. The HMG box domains facilitate the binding of HMGB proteins to the minor groove of DNA, which results in local bending of the DNA double helix (1,2). HMGB proteins are recruited by and help facilitate the assembly of site-specific DNA binding proteins to their cognate binding sites in chromatin. For example, HMGB1 and HMGB2 facilitate the binding of Hox proteins, Oct proteins, p53, Rel proteins, and steroid hormone receptor proteins to their target gene promoters (1,2). Furthermore, HMGB2 interacts with RAG1 to facilitate RAG complex binding to the recombinant signal sequence (RSS) and stimulate DNA-bending and subsequent VDJ cleavage at antigen receptor genes (5,6). In addition to their functions in the nucleus, HMGB proteins play a significant role in extracellular signaling associated with inflammation. HMGB2 is secreted by myeloid cells and promotes proliferation and migration of endothelial cells by binding to the receptor for advanced glycation endproducts (RAGE) (7). Research studies have shown that HMGB2 overexpression in hepatocellular carcinoma is associated with poor prognosis and shorter survival time (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Mucins represent a family of glycoproteins characterized by repeat domains and dense O-glycosylation (1). MUC1 (or mucin 1) is aberrantly overexpressed in most human carcinomas. Increased expression of MUC1 in carcinomas reduces cell-cell and cell-ECM interactions. MUC1 is cleaved proteolytically, and the large ectodomain can remain associated with the small 25 kDa carboxy-terminal domain that contains a transmembrane segment and a 72-residue cytoplasmic tail (1). MUC1 interacts with ErbB family receptors and potentiates ERK1/2 activation (2). MUC1 also interacts with β-catenin, which is regulated by GSK-3β, PKCγ, and Src through phosphorylation at Ser44, Thr41, and Tyr46 of the MUC1 cytoplasmic tail (3-5). Overexpression of MUC1 potentiates transformation (6) and attenuates stress-induced apoptosis through the Akt or p53 pathways (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The super elongation complex (SEC) plays a critical role in regulating RNA polymerase II (RNAPII) transcription elongation (1). The SEC is composed of AFF4, AFF1/AF4, MLLT3/AF9, and MLLT1/ENL proteins. The pathogenesis of mixed lineage leukemia is often associated with translocations of the SEC subunits joined to the histone H3 Lys4 methyltransferase mixed lineage leukemia (MLL) gene (1-4). The SEC has been found to contain RNAPII elongation factors eleven-nineteen lysine-rich leukemia (ELL), ELL2, and ELL3, along with the associated factors EAF1 and EAF2, which can increase the catalytic rate of RNAPII transcription in vitro, (1,2,5-7). The SEC positive transcription elongation factor b (P-TEFb) phosphorylates the carboxy-terminal domain within the largest subunit of RNAP II at Ser2 of the heptapeptide repeat. The SEC negative transcription elongation factors, DRB-induced stimulating factor (DSIF) and negative elongation factor (NELF), signal the transition from transcription initiation and pausing to productive transcription elongation (2,8-10). The chromosomal translocation of MLL with the members of the SEC leads to SEC recruitment to MLL regulated genes, such as the highly developmentally regulated Hox genes, implicating the misregulation and overexpression of these genes as underlying contributors to leukemogenesis (1,2,9,11).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Bak (D4E4) Rabbit mAb #12105.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: Bak is a proapoptotic member of the Bcl-2 family (1). This protein is located on the outer membrane of mitochondria and is an essential component for transduction of apoptotic signals through the mitochondrial pathway (2,3). Upon apoptotic stimulation, an upstream stimulator like truncated BID (tBID) induces conformational changes in Bak to form oligomer channels in the mitochondrial membrane for cytochrome c release. The release of cytochrome c to the cytosol activates the caspase-9 pathway and eventually leads to cell death (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Poly(A)-binding protein 2 (PABP2, PAPBN1) is a nuclear RNA-binding protein involved in the post-transcriptional processing of RNA molecules (1). The PABP2 protein enhances RNA polyadenylation by stimulating poly(A) polymerase (PAP) activity and facilitating the interaction between PAP and the cleavage and specificity factor (CPSF) to regulate poly(A) tail length (2-4). The role that PABP2 plays in regulating poly(A) tail formation and site selection may be important in influencing the length of the 3’ untranslated region (UTR), which can alter transcript stability and translation by RNA binding proteins and miRNAs (1,5). Mutations in the corresponding PABPN1 gene can result in oculopharyngeal muscular dystrophy (OPMD), an autosomal dominant muscle disorder characterized by weakness in proximal limb muscles, ptosis, and dysphagia (1,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The membrane protein syntaxin 5 (STX5) is a key component of soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes that regulate cellular protein transport, vesicle docking, and membrane fusion (1). Syntaxin 5 protein is found as a 42 kDa ("long") protein localized to the Golgi complex and endoplasmic reticulum, and a “short” 35 kDa isoform localized primarily to the Golgi (2,3). Formation of the syntaxin 5 SNARE complex, which also includes proteins Sec22B, Bet1, GOSR1, GOSR2, and Ykt6, allows for regulation of ER-to-Golgi transport, intra-Golgi transport, and endosome-to-Golgi retrograde transport (4-6). Research studies indicate that the syntaxin 5 SNARE complex also plays an essential role in autophagy following autophagosome formation. Intracellular protein transport mediated by the syntaxin 5 complex is required for transport and localized activity of lysosomal proteases. The experimental reduction or deletion of syntaxin 5 complex components results in non-functional lysosomes and accumulation of autophagosomes (7).

$260
100 µl
REACTIVITY
Human

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cyclin-dependent kinases (CDKs) are serine/threonine kinases that are activated by cyclins and govern eukaryotic cell cycle progression. While CDK5 shares high sequence homology with its family members, it is thought mainly to function in postmitotic neurons to regulate the cytoarchitecture of these cells. Analogous to cyclins, the regulatory subunits p35 and p39 associate with and activate CDK5 despite the lack of sequence homology. CDK5 is ubiquitously expressed, with high levels of kinase activity detected primarily in the nervous system due to the narrow expression pattern of p35 and p39 in post-mitotic neurons. A large number of CDK5 substrates have been identified although no substrates have been specifically attributed to p35 or p39. Substrates of CDK5 include p35, PAK1, Src, β-catenin, tau, neurofilament-H, neurofilament-M, synapsin-1, APP, DARPP32, PP1-inhibitor, and Rb. p35 is rapidly degraded (T1/2 <20 min) by the ubiquitin-proteasome pathway (1). However, p35 stability increases as CDK5 kinase activity decreases, likely as a result of decreased phosphorylation of p35 at Thr138 by CDK5 (2). Proteolytic cleavage of p35 by calpain produces p25 upon neurotoxic insult, resulting in prolonged activation of CDK5 by p25. Research studies have shown accumulation of p25 in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS) (3,4).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family small GTPases regulate processes such as cell migration, adhesion, proliferation, and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP. GEF-H1 is a Rho GEF that localizes to microtubules and regulates Rho activity in response to microtubule destabilization (1). Loss of interaction between GEF-H1 and microtubules leads to activation of Rho (2). Phosphorylation of GEF-H1 at Ser886 (Ser885 in mouse), a site located in the 14-3-3 binding motif, has been implicated in recruitment of 14-3-3 and GEF-H1 to microtubules (3), and in the regulation of RhoA activity in response to mitotic kinases during cytokinesis (4).GEF-H1 has also been shown to localize to tight junctions and modulate polarized cell permeability (5,6). GEF-H1 is inactivated by binding to cingulin at epithelial tight junctions, inactivating RhoA and leading to G1/S arrest (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Syk is a protein tyrosine kinase that plays an important role in intracellular signal transduction in hematopoietic cells (1-3). Syk interacts with immunoreceptor tyrosine-based activation motifs (ITAMs) located in the cytoplasmic domains of immune receptors (4). It couples the activated immunoreceptors to downstream signaling events that mediate diverse cellular responses, including proliferation, differentiation, and phagocytosis (4). There is also evidence of a role for Syk in nonimmune cells and investigators have indicated that Syk is a potential tumor suppressor in human breast carcinomas (5). Tyr323 is a negative regulatory phosphorylation site within the SH2-kinase linker region in Syk. Phosphorylation at Tyr323 provides a direct binding site for the TKB domain of Cbl (6,7). Tyr352 of Syk is involved in the association of PLCγ1 (8). Tyr525 and Tyr526 are located in the activation loop of the Syk kinase domain; phosphorylation at Tyr525/526 of human Syk (equivalent to Tyr519/520 of mouse Syk) is essential for Syk function (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Twinfilin is an actin monomer-binding protein found in all eukaryotes (1). Mammals have three isoforms. Twinfilin-1 and twinfilin-2a are expressed in most non-muscle cell types, whereas twinfilin-2b is the main isoform in adult heart and skeletal muscle (2). Twinfilins are composed of two ADF-homology domains connected by a 30 kDa linker region. All twinfilins have been shown to form a 1:1 complex with G-actin, but not F-actin (reviewed in 3). Twinfilin-1 was originally known as A6 protein tyrosine kinase and thought to be part of a novel class of protein kinases. However, the protein was renamed after further studies showed no evidence of tyrosine kinase activity (4). Twinfilin-1 helps to prevent the actin filament assembly by forming a complex with actin monomers and, in mammals, has been shown to cap the filament barbed ends. It has been suggested that this regulates cell motility (5). Suppression of twinfilin-1 has also been shown to slow lymphoma cell migration to lymph nodes (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Spinophilin is an 815 amino acid protein composed of a PDZ domain, 2 actin-binding domains, a receptor- and PP1-binding domain, three coiled-coiled domains, a potential leucine/isoleucine zipper motif, and three potential SH3 domains (1). Spinophilin interacts with a large number of proteins including ion channel components and G protein-coupled receptors (GPCRs). Spinophilin also interacts with actin filaments; phosphorylation of spinophilin at Ser94 and Ser177 disrupts this interaction (2). Spinophilin has been shown to affect GPCR function through two different mechanisms: spinophilin acts as a functional inhibitor of α-2 adrenergic receptor-mediated arrestin signaling by competing with GRK2 binding to the adrenergic receptor (3) and spinophilin facilitates μ-opioid receptor desensitization by promoting receptor endocytosis (4).

$262
3 nmol
300 µl
SignalSilence® OTULIN siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit OTULIN expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). Five subfamilies of DUBs have been characterized to date, and include USP, UCH, OTU, MJD, and JAMM deubiquitinating enzymes (1,2). The ovarian tumor (OTU) DUB subfamily comprises a group of approximately 100 putative cysteine proteases that are homologous to the Drosophila ovarian tumor gene product (3). OTU domain-containing deubiquitinase with linear linkage specificity (OTULIN, FAM105B, Gumby) is an OTU subfamily deubiquitinating enzyme that antagonizes the E3 linear ubiquitin chain assembly complex (LUBAC) by promoting disassembly of Met1-linked (linear) ubiquitin chains (4,5). LUBAC and OTULIN regulate NOD2 signaling in an antagonistic manner by controlling the level of Met1-ubiquitinated RIPK2 kinase (6). Binding of the OTULIN PUB-interacting motif to the HOIP subunit of LUBAC is critical for OTULIN inhibition of NF-κΒ signaling; this OTULIN-HOIP interaction is negatively regulated by tyrosine phosphorylation of OTULIN (7,8). The ability of OTULIN to influence LUBAC function and the presence of linear ubiquitin chains may play an important role in regulating angiogenesis, craniofacial, and neural development (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase that is required for cell growth and G1 cell cycle progression (1,2). p70 S6 kinase phosphorylates the S6 protein of the 40S ribosomal subunit and is involved in translational control of 5' oligopyrimidine tract mRNAs (1). A second isoform, p85 S6 kinase, is derived from the same gene and is identical to p70 S6 kinase except for 23 extra residues at the amino terminus, which encode a nuclear localizing signal (1). Both isoforms lie on a mitogen activated signaling pathway downstream of phosphoinositide-3 kinase (PI-3K) and the target of rapamycin, FRAP/mTOR, a pathway distinct from the Ras/MAP kinase cascade (1). The activity of p70 S6 kinase is controlled by multiple phosphorylation events located within the catalytic, linker and pseudosubstrate domains (1). Phosphorylation of Thr229 in the catalytic domain and Thr389 in the linker domain are most critical for kinase function (1). Phosphorylation of Thr389, however, most closely correlates with p70 kinase activity in vivo (3). Prior phosphorylation of Thr389 is required for the action of phosphoinositide 3-dependent protein kinase 1 (PDK1) on Thr229 (4,5). Phosphorylation of this site is stimulated by growth factors such as insulin, EGF and FGF, as well as by serum and some G-protein-coupled receptor ligands, and is blocked by wortmannin, LY294002 (PI-3K inhibitor) and rapamycin (FRAP/mTOR inhibitor) (1,6,7). Ser411, Thr421 and Ser424 lie within a Ser-Pro-rich region located in the pseudosubstrate region (1). Phosphorylation at these sites is thought to activate p70 S6 kinase via relief of pseudosubstrate suppression (1,2). Another LY294002 and rapamycin sensitive phosphorylation site, Ser371, is an in vitro substrate for mTOR and correlates well with the activity of a partially rapamycin resistant mutant p70 S6 kinase (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The PRC2 (EZH2-EED) complex is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the PRC1 complex, which ubiquitinylates histone H2A on Lys119 (5). Suppressor of Zeste 12 (SUZ12) is an obligate component of the PRC2 complex, which together with EZH2 and EED is absolutely required for histone methyltransferase activity of the protein complex (6).The zinc finger AE binding protein 2 (AEBP2) is another integral component of the PRC2 complex. Addition of AEBP2 to the PRC2 core complex (EZH2-EED-SUZ12) enhances histone H3 Lys27 methyltransferase activity on nucleosomal substrates in vitro, which may be mediated in part by three AEBP2 DNA-binding zinc finger domains (5,7). AEBP2-mediated enhancement of enzymatic activity is greater on nucleosomal substrates that contain mono-ubiquitinated histone H2A Lys119, which suggests that AEBP2 may target PRC2 complexes in vivo through binding to DNA and mono-ubiquitinated histone H2A Lys119 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). Five subfamilies of DUBs have been characterized to date, and include USP, UCH, OTU, MJD, and JAMM deubiquitinating enzymes (1,2). The ovarian tumor (OTU) DUB subfamily comprises a group of approximately 100 putative cysteine proteases that are homologous to the Drosophila ovarian tumor gene product (3). OTU domain-containing deubiquitinase with linear linkage specificity (OTULIN, FAM105B, Gumby) is an OTU subfamily deubiquitinating enzyme that antagonizes the E3 linear ubiquitin chain assembly complex (LUBAC) by promoting disassembly of Met1-linked (linear) ubiquitin chains (4,5). LUBAC and OTULIN regulate NOD2 signaling in an antagonistic manner by controlling the level of Met1-ubiquitinated RIPK2 kinase (6). Binding of the OTULIN PUB-interacting motif to the HOIP subunit of LUBAC is critical for OTULIN inhibition of NF-κΒ signaling; this OTULIN-HOIP interaction is negatively regulated by tyrosine phosphorylation of OTULIN (7,8). The ability of OTULIN to influence LUBAC function and the presence of linear ubiquitin chains may play an important role in regulating angiogenesis, craniofacial, and neural development (5).

$232
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated PD-L1 (E1L3N®) XP® Rabbit mAb #13684.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Programmed cell death 1 ligand 1 (PD-L1, B7-H1, CD274) is a member of the B7 family of cell surface ligands that regulate T cell activation and immune responses. The PD-L1 ligand binds the PD-1 transmembrane receptor and inhibits T cell activation. PD-L1 was discovered following a search for novel B7 protein homologs and was later shown to be expressed by antigen presenting cells, activated T cells, and tissues including placenta, heart, and lung (1-3). Similar in structure to related B7 family members, PD-L1 protein contains extracellular IgV and IgC domains and a short, cytoplasmic region. Research studies demonstrate that PD-L1 is expressed in several tumor types, including melanoma, ovary, colon, lung, breast, and renal cell carcinomas (4-6). Expression of PD-L1 in cancer is associated with tumor infiltrating lymphocytes, which mediate PD-L1 expression through the release of interferon gamma (7). Additional research links PD-L1 expression to cancers associated with viral infections (8,9).

$489
96 assays
1 Kit
PathScan® Total PSA/KLK3 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of PSA/KLK3. A PSA/KLK3 Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, PSA/KLK3 protein is captured by the coated antibody. Following extensive washing, a PSA/KLK3 Mouse Detection mAb is added to detect the captured PSA/KLK3 protein. A HRP-linked, anti-mouse antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total PSA/KLK3.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Kallikrein 3 (KLK3), also known as Prostate Specific Antigen (PSA), is a member of the glandular kallikrein subfamily of serine proteases (1). It is produced by prostate epithelial cells and is secreted into prostatic ducts. Upon cleavage of 7 amino-terminal amino acids (2), it is activated to liquefy semen in the seminal coagulum. Although PSA/KLK3 is produced in healthy individuals, investigators have found abnormally high levels in the blood of men with advanced prostate cancer (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation, Western Blotting

Background: Methylation of lysine residues is a common regulatory posttranslational modification (PTM) that results in the mono-, di-, or tri-methylation of lysine at ε-amine groups by protein lysine methyltransferases (PKMTs). Two PKMT groups are recognized based on structure and catalytic mechanism: class I methyltransferases or seven β strand enzymes, and SET domain-containing class V methyltransferases. Both use the methyl donor S-adenosyl-L-methionine to methylate histone and non-histone proteins. Class I methyltransferases methylate amino acids, DNA, and RNA (1,2). Six methyl-lysine-interacting protein families are distinguished based on binding domains: MBT, PHD finger, Tudor, PWWP, WD40 repeat, and chromodomains. Many of these display differential binding preferences based on lysine methylation state (3). KDM1 subfamily lysine demethylases catalyze demethylation of mono- and di-methyl lysines, while 2-oxoglutarate-dependent JmjC (KDM2-7) subfamily enzymes also modify tri-methyl lysine residues (4).Most PKMT substrates are histone proteins and transcription factors, emphasizing the importance of lysine methylation in regulating chromatin structure and gene expression. Lys9 of histone H3 is mono- or di-methylated by G9A/GLP and tri-methylated by SETDB1 to activate transcription. JHDM3A-mediated demethylation of the same residue creates mono-methyl Lys9 and inhibits gene transcription (5). Tumor suppressor p53 is regulated by methylation of at least four sites. p53-mediated transcription is repressed following mono-methylation of p53 at Lys370 by SMYD2; di-methylation at the same residue further inhibits p53 by preventing association with 53BP1. Concomitant di-methylation at Lys382 inhibits p53 ubiquitination following DNA damage. Mono-methylation at Lys382 by SET8 suppresses p53 transcriptional activity, while SET7/9 mono-methylation at Lys372 inhibits SMYD2 methylation at Lys370 and stabilizes the p53 protein. Di-methylation at Lys373 by G9A/GLP inhibits p53-mediated apoptosis and correlates with tri-methylation of histone H3 Lys9 at the p21 promoter (1,6). Overexpression of PKMTs is associated with multiple forms of human cancer, which has generated tremendous interest in targeting protein lysine methyltransferases in drug discovery research.

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: GTPase immune-associated proteins (GIMAP), also known as immune-associated nucleotide-binding (IAN) proteins, are evolutionarily conserved GTP-binding proteins involved in lymphocyte development, inflammation, and autoimmune diseases (reviewed in 1,2). Human GTPase IMAP family member 5 (GIMAP5, hIan5) is the homolog of the rat Ian4 protein that is mutated in severe cases of T-cell lymphopenia and insulin-dependent diabetes in Biobreeding diabetes-prone (BB-DP) rats (3,4). GIMAP5 protein is preferentially expressed in CD4- and CD8-positive T-cells as well as B-cell lymphomas (4). Research studies using GIMAP5-deficient mice show that GIMAP5 protein is critical for survival of peripheral T-cells, hematopoietic stem cells, and progenitor cells (5-7). Additional studies indicate that GIMAP5 deficiency leads to a loss of immunological tolerance (8). Polymorphisms in the human GIMAP5 gene are associated with systemic lupus erythematosus and type I diabetes (9-11). Potential mechanisms for GIMAP5 control of cell survival include regulation of Bcl-2 family proteins, mitochondrial integrity, lysosomal function, and calcium regulation (7, 12-15).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated IRF-1 (D5E4) XP® Rabbit mAb #8478.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mortality factor 4-like protein 1 (MORF4L1/MRG15) is a chromo domain-containing protein that is part of several histone modifying complexes, including the Tip60 histone acetyltransferase (HAT) complex, histone deacetylase (HDAC) complexes, and the JARID1A and JARID1B histone demethylase complexes (1-6). MORF4L1/MRG15 recognizes di- or trimethylated Lys36 of histone H3 through its chromo domain. This interaction recruits and anchors MORF4L1/MRG15-associated chromatin modifying complexes to target genes for transcriptional regulation (7,8). MORF4L1/MRG15 plays a role in DNA repair as part of the Tip60 HAT complex (9,10). MORF4L1/MRG15 regulates alternative splicing during co-transcriptional splicing of mRNA as a part of the JARID1A complex (11). MORF4L1/MRG15 recruitment of the JARID1B complex to embryonic stem cell renewal-associated genes is important for repression of cryptic transcription and maintenance of proper transcriptional elongation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Catalase catalyzes the conversion of hydrogen peroxide to water and oxygen (1). Research studies show that overexpression of this antioxidant enzyme increases the ability of pancreatic β-cells to scavenge reactive oxygen species (ROS), thereby protecting pancreatic β-cells from oxidative stress (2). The pancreatic β-cells overexpressing this enzyme are also protected from hydrogen peroxide-mediated lipotoxicity, providing further evidence for the importance of catalase in the pathogenesis of diabetes (3).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (197G2) Rabbit mAb #4377.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mink, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Bcl-2-related protein A1 (Bfl-1, BCL2A1) is an anti-apoptotic member of the Bcl-2 family originally cloned from mouse bone marrow as a granulocyte macrophage-colony stimulating factor (GM-CSF)-inducible gene (1). Expression of A1/Bfl-1 is primarily restricted to hematopoietic cells, although it has been detected in some non-hematopoietic tissues including lung and in endothelial cells (1,2). A1/Bfl-1 protein is rapidly induced by NF-κB and is elevated in response to a variety of factors that stimulate this pathway, including TNF-α and IL-1β, CD40, phorbol ester, and LPS (2-4). As with other Bcl-2 family proteins, A1/Bfl-1 functions by binding and antagonizing pro-apoptotic members of the family (Bid, Bim), which inhibits release of mitochondrial cytochrome c (5). In contrast, research studies indicate that the enzyme calpain cleaves A1/Bfl-1 at specific sites within the amino terminal region, creating pro-apoptotic, carboxy-terminal fragments that promote mitochondrial release of cytochrome c and apoptosis (6). Studies suggest a possible therapeutic strategy of targeting apoptosis through use of the specific A1/Bfl-1 cleavage fragments (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic cell proliferation depends strictly upon the E3 ubiquitin ligase activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. The APC/C complex promotes the assembly of polyubiquitin chains on substrate proteins in order to target these proteins for degradation by the 26S proteasome (1,2). The vertebrate APC/C complex consists of as many as 15 subunits, including multiple scaffold proteins, two catalytic subunits (APC2, APC11), and a number of proteins responsible for substrate recognition (3). All E3 enzymes, including APC/C, utilize ubiquitin residues activated by E1 enzymes and transferred to E2 enzymes. Research studies indicate that APC/C interacts with the E2 enzymes UBE2S and UBE2C via the RING-finger domain-containing subunit APC11 (4-6). APC/C function relies on multiple cofactors, including an APC/C coactivator formed by the cell division control protein 20 homolog (CDC20) and Cdh1/FZR1. The CDC20/Cdh1 coactivator is responsible for recognition of APC/C substrates through interaction with specific D-box and KEN-box recognition elements within these substrates (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Rho family of small GTPases, including Rho, Rac, and Cdc42, act as molecular switches that regulate processes such as cell migration, adhesion, proliferation, and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP (1). The serine- and proline-rich GAP protein, Cdc42 GAP (CdGAP), has been shown to be a negative regulator of both Cdc42 and Rac1, but not RhoA (2,3). This protein contains three domains: an amino-terminal GAP domain, a central domain, and a carboxy-terminal proline-rich domain containing five Src homology 3 (SH3)-binding sites. It is suggested that threonine and serine phosphorylation within the proline-rich domain likely alters protein-protein interactions and determines the localization of CdGAP (4). Phosphorylation of CdGAP on threonine 776 by both ERK-1 and GSK-3 has been shown to negatively regulate protein activity, possibly by inducing a conformational change within the protein disrupting its ability to bind SH3 domains (4,5). Upregulation of CdGAP has been shown to increase cell proliferation and it has been suggested that this protein may play a role in TGF-β-induced cell growth, motility, and invasion in some breast cancer cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The prohibitins PHB1 and PHB2 are highly conserved, multifunctional proteins present in eukaryotic nuclear and mitochondrial compartments (1). Prohibitin-2 (PHB2, REA) was originally identified as an estrogen receptor-specific coregulator. PHB2 directly interacts with hormone-bound estrogen receptor and represses its transcriptional activity through competitive inhibition of Src-1 coactivation of the estrogen receptor (2,3). Together with COUP transcription factors, PHB2 interacts with histone deacetylases HDAC1 and HDAC5 to mediate transcriptional regulation by the estrogen receptor through coupling the deacetylase to the transcription activation complex (4). Prohibitin PHB1/PHB2 heterodimers form large ring complexes on the mitochondrial membrane (5) and act as chaperones to stabilize mitochondrial proteins, such as OPA1 and Hax1, to support mitochondrial morphogenesis and protect against apoptosis (6-8).