Microsize antibodies for $99 | Learn More >>

Product listing: RCAS1 (D8K2E) Mouse mAb, UniProt ID O00559 #67856 to RIF1 (D2F2M) Rabbit mAb, UniProt ID Q5UIP0 #95558

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Receptor binding cancer antigen expressed on SiSo cells (RCAS1) is also known as estrogen receptor-binding fragment-associated gene 9 (EBAG9). Originally identified as an estrogen-inducible gene (1), RCAS1 was recently found to play a novel role in the adaptive immune response by negatively regulating the cytolytic activity of cytotoxic T lymphocytes (CTLs) (2). RCAS1 is conserved in phylogeny and is ubiquitously expressed in most human tissues and cells (3,4). There is evidence that tissue expression of RCAS1 is increased in a variety of malignancies, including cancers of the gastrointestinal tract, liver, lung, breast, ovary, endometrium, and cervix. Research studies have shown that levels of RCAS1 tissue expression are negatively correlated with the prognosis of patients harboring the aforementioned malignancies (4). It is also noteworthy that research studies have detected elevated levels of RCAS1 in the sera of cancer patients (4). Initial studies indicated that RCAS1 was secreted from cancer cells and functioned as a ligand for a putative receptor expressed on NK cells, as well as T and B lymphocytes, inducing their apoptosis, which enabled cancer cells to evade immune surveillance (5,6). Subsequent studies have identified RCAS1 as a type III transmembrane Golgi protein with the ability to regulate vesicle formation, secretion, and protein glycosylation (2,7-9). Indeed, it has been shown that RCAS1 overexpression negatively regulates the cytolytic function of CTLs by negatively regulating protein trafficking from the trans-Golgi to secretory lysosomes (2). Furthermore, RCAS1 overexpression delays vesicle transport from the ER to Golgi and causes components of the ER quality control and glycosylation machinery to mislocalize. As a consequence, RCAS1 induces the deposition of tumor-associated glycan antigens on the cell surface, which are thought to contribute to tumor pathogenesis through the mediation of adhesion, invasion, and metastasis (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Ras family small GTPase Ran is involved in nuclear envelope formation, assembly of the mitotic spindle, and nuclear transport (1,2). Like other small GTPases, Ran is active in its GTP-bound form and inactive in its GDP-bound form. Nuclear RanGTP concentration is maintained through nuclear localization of guanine nucleotide exchange factor (GEF) activity, which catalyzes the exchange of bound GDP for GTP. Regulator of chromatin condensation 1 (RCC1) is the only known RanGEF (3). RCC1 is dynamically chromatin-bound throughout the cell cycle, and this localization is required for mitosis to proceed normally (4,5). Appropriate association of RCC1 with chromatin is regulated through amino-terminal phosphorylation (5,6) and methylation (7). RCC1 regulation of RanGTP levels in response to histone modifications regulates nuclear import during apoptosis (8). In mitosis RCC1 is phosphorylated at Ser11, possibly by cyclin B/cdc2 (9-11). This phosphorylation may play a role in RCC1 interaction with chromatin and RCC1 RanGEF activity (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: RCC2/TD-60 is a member of the RCC1 (regulator of chromosome condensation 1) family of guanine nucleotide exchange factors. RCC2/TD-60 is associated with the chromosome passenger complex (CPC), which also consists of aurora B kinase, borealin, INCENP (inner centromere protein) and survivin. The CPC acts at various stages of mitosis, interacts with microtubules and is required for proper chromosome segregation and cytokinesis. Regulation of aurora B kinase is key in the regulation of the CPC (reviewed in 1,2). In late mitosis, RCC2/TD-60 is required for spindle assembly and recruitment of survivin and aurora B (3). RCC2/TD-60 is also required for aurora B activation in vitro and localization of the CPC to centromeres (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: RECK (reversion-inducing cysteine-rich protein with Kazal motif) is a GPI-anchored membrane glycoprotein that negatively regulates members of the matrix metalloproteinase (MMP) family and functions as a suppressor of transformation (1,2). Its function in MMP inhibition makes RECK a crucial factor in the regulation of extracellular matrix formation and stability during development (2-4). RECK has also been linked to the regulation of other extracellar matrix proteases such as ADAM10 and CD13 and functions in modulating target protein endocytosis and Notch signaling (5,6). RECK is widely expressed in normal tissue and decreased expression of RECK due to promoter methylation has been correlated with tumor transformation, angiogenesis and metastasis (1,7-9). Therefore, loss of RECK expression serves as a prognostic hallmark for cancer malignancy (10,11)

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The RecQ family is a group of DNA helicases that play an important role in global genomic stability (1). Mutations in three of the five known human RecQ proteins (BLM, WRN and RECQL4) give rise to clinically distinct disorders that are characterized by features such as premature aging and predisposition to cancer (2,3). The clinical distinction of each disease associated with these mutations points to distinct roles that members of this helicase family play in DNA metabolism. RecQL1 is the most abundant protein of the RecQ family and was the first family member to be discovered. No disease associations have been reported with RecQL1 and its biological activities are not well understood (4). It has recently been shown that depletion of RecQL1 negatively affects genomic maintenance and cellular proliferation – which may point to a role in DNA damage repair and cell cycle progression (5,6). Upregulation of RecQL1 along with other RecQ family members has been reported in cells in response to oncogenic viral infection (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The RecQ family is a group of DNA helicases that play an important role in global genomic stability (1). Mutations in three of the five known human RecQ proteins (BLM, WRN, and RECQL4) give rise to clinically distinct disorders that are characterized by features such as premature aging and predisposition to cancer (2,3). The clinical distinction of each disease associated with these mutations points to distinct roles that members of this helicase family play in DNA metabolism. The RecQL5 helicase has not yet been associated with any human disease, but RecQL5 -/- mice exhibit an increased incidence of cancer (4,5). It has recently been shown that RecQL5 protects genome stability through two parallel mechanims: helicase action and interaction with the initiation form of RNA Polymerase II (6). It has also been shown that RecQL5 -/- mouse embryonic stem cells display an elevated frequency of sister chromatic exchange (SCE), suggesting a role in suppression of homologous recombination and/or crossover events (7,8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: REPS1 is a RalBP1-associated EH-homology domain containing protein. The sequence of REPS1 has an EH domain, followed by two proline-rich segments, and a C-terminal coiled-coil domain for binding to RalBP1 (1). The EH domain of REPS1 interacts with the NPF motif of Rab11-FIP2, mediates their colocalization to endosome vesicles, and influences EGFR endocytosis (2). The two proline-rich regions of REPS1 are important for binding to the SH3 domain of GRK/GRB2 and further regulate EGFR downstream signaling. The proline-rich regions of REPS1 have also been shown to interact with the SH3 domain of intersectin1 (ITSN1) and contribute to ITSN1/SGIP1/REPS1 complex formation on clathrin-coated pits (3). Three alternatively spliced isoforms of REPS1 have been identified.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Reptin/RuvBL2 and Pontin/RuvBL1 are closely related members of the AAA+ (ATPase associated with diverse cellular activities) superfamily of proteins, and are putatively homologous to bacterial RuvB proteins that drive branch migration of Holliday junctions (1). Reptin and Pontin function together as essential components of chromatin remodeling and modification complexes, such as INO80, TIP60, SRCAP, and Uri1, which play key roles in regulating gene transcription (1,2). In their capacity as essential transcriptional co-regulators, Reptin and Pontin have both been implicated in oncogenic transformations, including those driven by c-Myc, β-catenin, and E1A (2-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Ret (E1N9A) Rabbit mAb (Flow Preferred) #14699.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Reverse orientation c-erbA gene α (Rev-erbα, EAR-1, or NR1D1) is a widely expressed member of the orphan nuclear receptor family of proteins (1). Rev-erbα is highly expressed in adipose tissue, skeletal muscle, brain and liver, and regulates cellular proliferation and differentiation. Expression increases during differentiation in adipocytes and ectopic expression of Rev-erbα potentiates the adipocyte differentiation of 3T3-L1 cells (2). In addition, expression oscillates with circadian rhythm in liver cells and Rev-erbα regulates expression of BMAL1, ApoA-I and ApoC-III, all key regulators of circadian rhythm (3-7). Phosphorylation of Rev-erbα Ser55 and Ser59 by GSK-3β appears to stabilize Rev-erbα protein levels and is important for synchronizing and maintaining the circadian clock (8). Rev-erbα also regulates inflammation by targeting the NF-κB responsive genes IL-6 and COX-2 (9). Rev-erbα lacks the activation function 2 domain required for ligand-dependent activation of transcription by other members of the nuclear receptor family; thus it behaves as a constitutive repressor protein, recruiting the nuclear receptor co-repressor (N-CoR)/HDAC3 complex to target genes to repress transcription (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Regulators of G protein signaling (RGS) are a family of about 40 proteins that determine the signaling amplitude and duration of G protein-coupled receptor signaling via modulation of the GTPase activity of G proteins (1-3). Each RGS has a distinct structure, expression pattern, and regulation, resulting in preferential interactions with receptors, G proteins, and other signaling proteins, as well as a unique function (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ras Homolog Enriched in Brain (Rheb) is an evolutionarily conserved member of the Ras family of small GTP-binding proteins originally found to be rapidly induced by synaptic activity in the hippocampus following seizure (1). While it is expressed at relatively high levels in the brain, Rheb is widely expressed in other tissues and may be induced by growth factor stimulation. Like other Ras family members, Rheb triggers activation of the Raf-MEK-MAPK pathway (2). Biochemical and genetic studies demonstrate that Rheb has an important role in regulating the insulin/TOR signaling pathway (3-6). The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that acts as a sensor for ATP and amino acids, balancing the availability of nutrients with translation and cell growth. The tuberin/hamartin (TSC2/TSC1) complex inhibits mTOR activity indirectly by inhibiting Rheb through the tuberin GAP activity (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI) (1). RhoA, RhoB and RhoC are highly homologous, but appear to have divergent biological functions. Carboxy-terminal modifications and differences in subcellular localization allow these three proteins to respond to and act on distinct signaling molecules (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI) (1). RhoA, RhoB and RhoC are highly homologous, but appear to have divergent biological functions. Carboxy-terminal modifications and differences in subcellular localization allow these three proteins to respond to and act on distinct signaling molecules (2,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI) (1). RhoA, RhoB and RhoC are highly homologous, but appear to have divergent biological functions. Carboxy-terminal modifications and differences in subcellular localization allow these three proteins to respond to and act on distinct signaling molecules (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rhodopsin is the photoreceptor in the retinal rods. It is activated by photons, transduces visual information through its cognate G protein, transducin, and is inactivated by arrestin binding (1). Using atomic-force microscopy, rhodopsin was found to be arranged into paracrystalline arrays of dimers in mouse disc membranes (2). Rhodopsin is considered to be the prototype of G protein-coupled receptors (GPCRs), and is the first GPCR for which a crystal structure was solved (3). Research studies have linked mutations in the gene encoding rhodopsin to retinitis pigmentosa (4,5), a disease characterized by retinal degeneration resulting in reduced peripheral vision and night blindness (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin)

Background: Rhodopsin is the photoreceptor in the retinal rods. It is activated by photons, transduces visual information through its cognate G protein, transducin, and is inactivated by arrestin binding (1). Using atomic-force microscopy, rhodopsin was found to be arranged into paracrystalline arrays of dimers in mouse disc membranes (2). Rhodopsin is considered to be the prototype of G protein-coupled receptors (GPCRs), and is the first GPCR for which a crystal structure was solved (3). Research studies have linked mutations in the gene encoding rhodopsin to retinitis pigmentosa (4,5), a disease characterized by retinal degeneration resulting in reduced peripheral vision and night blindness (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Rho family small GTPases act as molecular switches that regulate processes such as cell migration, adhesion, proliferation and differentiation. Typically, they are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and are inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP (1). Rnd1, Rnd2 and RhoE/Rnd3 comprise the evolutionarily divergent Rnd family of Rho-type small GTPases, which lack GTPase activity and therefore remain in a GTP-bound state (2, reviewed in 3). RhoE/Rnd3 activity leads to a decrease in stress fibers and increased cell migration, at least in part through regulation of the Rho-dependent kinase ROCK1 (4). Activity of RhoE/Rnd3 itself is regulated by ROCK1, which phosphorylates RhoE/Rnd3 at Ser11, enhancing its activity (5). RhoE/Rnd3 has been implicated in inhibition of DNA-damage induced apoptosis (6) and cell cycle arrest (7). In keratinocytes, RhoE/Rnd3 regulates differentiation through its effects on both proliferation and adhesion (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L26 (RPL26) is a component of the 60S ribosomal subunit and is involved in translation (1,2). It was shown that RPL26 increases the translation of p53 mRNA by binding to its 5' untranslated region (UTR) after DNA damage. Studies found that overexpression of RPL26 enhances the binding of p53 mRNA to the ribosomes and increases p53 translation. Overexpression of RPL26 also induces cell-cycle arrest at G1 phase and increases radiation-stimulated apoptosis (2).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase with two different complexes. One complex contains mTOR, GβL and raptor, which is a target of rapamycin. The other complex, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTOR-rictor complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). This complex has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase with two different complexes. One complex contains mTOR, GβL and raptor, which is a target of rapamycin. The other complex, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTOR-rictor complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). This complex has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4).

$305
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated sepharose beads. Rictor (D16H9) Rabbit mAb (Sepharose Bead Conjugate) is useful for immunoprecipitation assays. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Rictor (D16H9) Rabbit mAb #9476.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase with two different complexes. One complex contains mTOR, GβL and raptor, which is a target of rapamycin. The other complex, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTOR-rictor complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). This complex has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Rap1 interacting factor 1 (RIF1) was originally identified as a regulator of telomere homeostasis in yeast and mammalian cells (1). Research studies show that RIF1 regulates the timing of eukaryotic DNA replication origin firing through its affect on chromatin architecture (2-4). Additional studies show that RIF1 is essential for regulating the repair of DNA double strand breaks (DSBs). RIF1 is recruited to sites of DSBs by 53BP1 in response to DNA damage, and suppresses 5' end resection to favor the non-homologous end joining (NHEJ) pathway over homologous recombination (HR) repair (5-9). Oct4 and Smad3 modulate Rif1 expression in mouse embryonic stem cells; Rif1 may regulate embryonic stem cell stability during cell proliferation (10).