Microsize antibodies for $99 | Learn More >>

Product listing: S100A4 (D9F9D) Rabbit mAb, UniProt ID P26447 #13018 to SCF (C19H6) Rabbit mAb, UniProt ID P21583 #2093

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated S100A9 (D3U8M) Rabbit mAb (Rodent Specific) #73425.
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Flow Cytometry

Background: S100A8 and S100A9 are calcium-binding proteins that form a noncovalent heterodimer present in monocytes, neutrophils, macrophages, and some epithelial cells (1, 2). S100A8 and S100A9 are secreted by a tubulin-dependent mechanism during inflammatory conditions and have antimicrobial and chemotactic functions (3-5). Extracellular S100A8/S100A9 also induces an inflammatory response in endothelial cells, including induction of proinflammatory chemokines and adhesion molecules and increased vascular permeability (6). S100A8/S100A9 induces and recruits myeloid-derived suppressor cells (MDSC) in tumor-bearing mice (7). MDSC produce additional S100A8/S100A9 themselves, resulting in a positive feedback mechanism that sustains MDSC accumulation (7). S100A8/S100A9 is also highly expressed in psoriatic skin, where it directly upregulates transcription of complement protein C3, which contributes to disease (8). In addition, tumor-infiltrating myeloid cells induce expression of S100A8 and S100A9 in cancer cells, which increases invasiveness and metastasis (9).

$269
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: S100A8 and S100A9 are calcium-binding proteins that form a noncovalent heterodimer present in monocytes, neutrophils, macrophages, and some epithelial cells (1, 2). S100A8 and S100A9 are secreted by a tubulin-dependent mechanism during inflammatory conditions and have antimicrobial and chemotactic functions (3-5). Extracellular S100A8/S100A9 also induces an inflammatory response in endothelial cells, including induction of proinflammatory chemokines and adhesion molecules and increased vascular permeability (6). S100A8/S100A9 induces and recruits myeloid-derived suppressor cells (MDSC) in tumor-bearing mice (7). MDSC produce additional S100A8/S100A9 themselves, resulting in a positive feedback mechanism that sustains MDSC accumulation (7). S100A8/S100A9 is also highly expressed in psoriatic skin, where it directly upregulates transcription of complement protein C3, which contributes to disease (8). In addition, tumor-infiltrating myeloid cells induce expression of S100A8 and S100A9 in cancer cells, which increases invasiveness and metastasis (9).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: S100A8 and S100A9 are calcium-binding proteins that form a noncovalent heterodimer present in monocytes, neutrophils, macrophages, and some epithelial cells (1, 2). S100A8 and S100A9 are secreted by a tubulin-dependent mechanism during inflammatory conditions and have antimicrobial and chemotactic functions (3-5). Extracellular S100A8/S100A9 also induces an inflammatory response in endothelial cells, including induction of proinflammatory chemokines and adhesion molecules and increased vascular permeability (6). S100A8/S100A9 induces and recruits myeloid-derived suppressor cells (MDSC) in tumor-bearing mice (7). MDSC produce additional S100A8/S100A9 themselves, resulting in a positive feedback mechanism that sustains MDSC accumulation (7). S100A8/S100A9 is also highly expressed in psoriatic skin, where it directly upregulates transcription of complement protein C3, which contributes to disease (8). In addition, tumor-infiltrating myeloid cells induce expression of S100A8 and S100A9 in cancer cells, which increases invasiveness and metastasis (9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated S100A9 (D5O6O) Rabbit mAb #72590.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: S100A8 and S100A9 are calcium-binding proteins that form a noncovalent heterodimer present in monocytes, neutrophils, macrophages, and some epithelial cells (1, 2). S100A8 and S100A9 are secreted by a tubulin-dependent mechanism during inflammatory conditions and have antimicrobial and chemotactic functions (3-5). Extracellular S100A8/S100A9 also induces an inflammatory response in endothelial cells, including induction of proinflammatory chemokines and adhesion molecules and increased vascular permeability (6). S100A8/S100A9 induces and recruits myeloid-derived suppressor cells (MDSC) in tumor-bearing mice (7). MDSC produce additional S100A8/S100A9 themselves, resulting in a positive feedback mechanism that sustains MDSC accumulation (7). S100A8/S100A9 is also highly expressed in psoriatic skin, where it directly upregulates transcription of complement protein C3, which contributes to disease (8). In addition, tumor-infiltrating myeloid cells induce expression of S100A8 and S100A9 in cancer cells, which increases invasiveness and metastasis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: S100A8 and S100A9 are calcium-binding proteins that form a noncovalent heterodimer present in monocytes, neutrophils, macrophages, and some epithelial cells (1, 2). S100A8 and S100A9 are secreted by a tubulin-dependent mechanism during inflammatory conditions and have antimicrobial and chemotactic functions (3-5). Extracellular S100A8/S100A9 also induces an inflammatory response in endothelial cells, including induction of proinflammatory chemokines and adhesion molecules and increased vascular permeability (6). S100A8/S100A9 induces and recruits myeloid-derived suppressor cells (MDSC) in tumor-bearing mice (7). MDSC produce additional S100A8/S100A9 themselves, resulting in a positive feedback mechanism that sustains MDSC accumulation (7). S100A8/S100A9 is also highly expressed in psoriatic skin, where it directly upregulates transcription of complement protein C3, which contributes to disease (8). In addition, tumor-infiltrating myeloid cells induce expression of S100A8 and S100A9 in cancer cells, which increases invasiveness and metastasis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S5a (PSMD4) is a subunit of the 19S regulatory proteasome complex functioning in ubiquitinated-protein targeting and degradation (1). S5a contains two polyubiquitin binding motifs (UIM) that bind multiubiquitin chains by hydrophobic interaction (2,3). In addition to ubiquitin, the UIM of S5a shows high affinity to a ubiquitin-like domain present in many proteins. S5a binds to these types of proteins directly and mediates their targeting to the proteasome for degradation (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S5a (PSMD4) is a subunit of the 19S regulatory proteasome complex functioning in ubiquitinated-protein targeting and degradation (1). S5a contains two polyubiquitin binding motifs (UIM) that bind multiubiquitin chains by hydrophobic interaction (2,3). In addition to ubiquitin, the UIM of S5a shows high affinity to a ubiquitin-like domain present in many proteins. S5a binds to these types of proteins directly and mediates their targeting to the proteasome for degradation (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (5G10) Rabbit mAb #2217.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (5G10) Rabbit mAb #2217.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Members of the SALL gene family encode putative zinc finger transcription factors highly expressed during development (1). Sall4 is expressed very early in development with other pluripotency regulators, such as Oct-4 and Nanog (2). Recent studies suggest Sall4 works as a master regulator that controls its own expression and the expression of Oct-4 in a transcriptional regulation feedback loop governing stem cell pluripotency and stem cell fate (2,3). Immunohistochemical studies indicate that Sall4 is a sensitive and specific diagnostic marker for primary germ cell tumors and yolk sac tumors (4,5). Research studies have shown that Sall4 is constitutively expressed in acute myeloid leukemia (AML) and is a probable effector of the Wnt/β-catenin signaling pathway in this disease (6). In addition, mutations in Sall4 have been implicated in human malformation syndromes including Duane-radial ray syndrome (Okihiro syndrome) and Acro-renal-ocular syndrome (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Synapse-associated protein 102 (SAP102, DLG3) belongs to the membrane-associated guanylate kinase (MAGUK) protein family and is a homolog of the Drosophila disc large (dlg) tumor suppressor protein. SAP102 consists of three PDZ domains, a Src homology 3 (SH3) domain, and a guanylate kinase (GK) domain (1). The SAP102 protein is more highly expressed in nonproliferating cells than in proliferating cells, indicating a role in the negative regulation of cell growth. SAP102 interacts with the carboxy terminus of the adenomatous polyposis coli (APC) tumor suppressor protein. Furthermore, SAP102 associates with PSD95 in the presence of calcium while the SH3 domain of SAP102 binds calmodulin (2,3). All three PDZ domains of SAP102 participate in binding to the NMDA receptor, interacting specifically with the carboxy-terminal domain of the N-methyl-D-aspartate receptor 2B (NR2B). This SAP102-NR2B interaction may facilitate AMPA receptor withdrawal from the postsynaptic membrane by inhibiting the Erk/MAPK pathway (1,4). Neuronal SAP102 is concentrated at dendritic shafts and spines, axons, and synaptic junctions. At excitatory synapses, SAP102 is involved in NMDA receptor clustering and immobilization and links NMDA receptors to the submembraneous cytomatrix (4). SAP102 and the NMDA receptor function together to mediate plasticity, behavior, and signal transduction (1). A nonsyndromic form of X-linked mental retardation is caused by loss-of-function mutations to the SAP102 gene. The SAP102 protein may be involved in autism since MAGUK proteins in the NMDA receptor complex bind directly to the autism susceptibility gene, neuroligin (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Smad anchor for receptor activation (SARA, ZFYVE9) protein is an FYVE domain-containing protein originally identified as a regulator of TGF-β signaling (1). FYVE domains are zinc finger-like domains that bind to phosphatidylinositol 3-phosphate and are responsible for endosomal trafficking (2). While the role of Sara in TGF-β signaling has been questioned (3,4), early research studies demonstrate that Sara enhances TGF-β signaling by binding and recruiting non-activated Smad2 and Smad3 to the TGF-β receptor complex (1). Upon Smad2 activation, Sara dissociates from the complex while phosphorylated Smad2/3 translocates to the nucleus to bind to the common Smad, Smad4. Sara can also function as an anchor for the protein phosphatase 1 (PP1c) catalytic subunit, which is involved in the Smad7-mediated dephosphorylation of TGF-β type I receptor (5,6). Additional research studies show that expression of Sara plays a critical role in maintenance of the epithelial cell phenotype and that expression is regulated during the epithelial-to-mesenchymal transition (EMT) and fibrosis (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Spermidine/spermine N1-acetyltransferase 1 (SAT1) is a key enzyme in polyamine metabolism. It acts by acetylating spermidine and spermine using acetyl-coenzyme A (CoA), which alters their charge and facilitates their secretion (1,2). SAT1 activity is tightly controlled in cells, but increases quickly by excess polyamines. Its activity can also be induced by a number of other stimuli, such as oxidative stress, heat shock, insulin-like growth factor-I, and cytotoxins (2-4). Research studies have found that SAT1 is overexpressed in glioblastoma multiforme (GBM), which suggest that SAT1 may be a potential therapeutic target for GBM (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Special AT-rich binding protein 1 (SATB1) functions as both a global chromatin organizer and a gene-specific transcription factor (1). SATB1 cooperates with promyelocytic leukemia protein (PML) to regulate global chromatin architecture by organizing chromatin into distinct loops via periodic anchoring of matrix attachment regions (MARs) in DNA to the nuclear matrix (1-3). In addition, SATB1 recruits multiple chromatin-remodeling proteins that contribute to specific gene activation and repression, including the chromatin remodeling enzymes ACF and ISWI, the histone deacetylase HDAC1, and the histone acetyltransferases PCAF and p300/CBP (4-6). Phosphorylation of SATB1 on Ser185 by protein kinase C regulates its interaction with HDAC1 and PCAF. While unphosphorylated SATB1 binds to PCAF, phosphorylated SATB1 preferentially binds to HDAC1 (6). Acetylation of SATB1 on Lys136 by PCAF impairs its DNA binding activity, thereby removing SATB1 from gene promoters (6). SATB1 is expressed predominantly in thymocytes and is involved in gene regulation during T cell activation (1). SATB1 is also expressed in metastatic breast cancer cells and is a potential prognostic marker and therapeutic target for metastatic breast cancer (7). In a mouse model system, RNAi-mediated knockdown of SATB1 reversed tumorigenesis by inhibiting tumor growth and metastasis, while ectopic expression of SATB1 in non-metastatic breast cancer cells produced invasive tumors.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Special AT-rich binding protein 2 (SATB2) is a close homolog to SATB1 that functions as a transcription factor. It binds to nuclear matrix attachment regions (MARS); regulatory DNA sequences important for chromatin structure. SATB2 was initially identified when bound to the MARS of the immunoglobulin μ gene in pre-B cells, enhancing its expression (1). SATB2 plays a role in osteoblast differentiation by repressing the HoxA2 gene and enhancing the activity of Runx2 and ATF4 (2). SATB2 also plays a role in the developing cerebral cortex by changing chromatin structure surrounding the Ctip2 regulatory regions (3). In erythroid cells, SATB2 activates the γ-globin locus by recruiting PCAF and reordering the chromatin structure (4). Downregulation of SATB2 is linked to colorectal cancer and head and neck squamous carcinomas (5,6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Special AT-rich binding protein 2 (SATB2) is a close homolog to SATB1 that functions as a transcription factor. It binds to nuclear matrix attachment regions (MARS); regulatory DNA sequences important for chromatin structure. SATB2 was initially identified when bound to the MARS of the immunoglobulin μ gene in pre-B cells, enhancing its expression (1). SATB2 plays a role in osteoblast differentiation by repressing the HoxA2 gene and enhancing the activity of Runx2 and ATF4 (2). SATB2 also plays a role in the developing cerebral cortex by changing chromatin structure surrounding the Ctip2 regulatory regions (3). In erythroid cells, SATB2 activates the γ-globin locus by recruiting PCAF and reordering the chromatin structure (4). Downregulation of SATB2 is linked to colorectal cancer and head and neck squamous carcinomas (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Salvador homolog (SAV1), originally named WW45, was first identified as a 45 kDa protein containing a pair of WW domains and a coiled-coil region (1). SAV1 was subsequently shown to function as a scaffold protein, in a protein complex that includes the kinases MST2 and LATS1, and the transcriptional co-activator YAP (2). This protein complex comprises the core components of the Hippo signaling pathway, which regulates important cellular functions, including contact inhibition and apoptosis, that function to regulate tissue growth and organ size (3,4). A genetic screen in Drosophila identified a role for SAV1 in cell cycle regulation and apoptosis (5), while embryonic mice lacking Sav1 displayed hyperplastic growth and epithelial differentiation effects (6). These findings, together with the observation that SAV1 is mutated a number of human cancer cell lines, suggest that SAV1 functions as a tumor suppressor in the Hippo signaling pathway (5, 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The serum response factor (SRF) is a ubiquitous protein that modulates transcription of genes containing serum response elements (SRE) at their promoters. SRF regulates cellular processes such as cell proliferation and cytoskeletal signaling in conjunction with a variety of cofactors (1-3).Suppressor of cancer cell invasion (SCAI) is a highly conserved transcriptional cofactor that inhibits the activity of myocardin-related transcription factor (MRTF) family members MAL (MRTF-A), myocardin and OTT-MAL (4,5). SCAI controls the expression of integrin β1 and regulates cell migration and invasion in vitro (4). SCAI has also been shown to play a role in transcriptional regulation in neurons by regulating dendritic morphology through inhibition of the megakaryoblastic leukemia (MKL) family of transcription cofactors (6). Research studies have implicated SCAI in the regulation of the epithelial-to-mesenchymal transition (EMT) as well as in renal fibrosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Stearoyl-CoA desaturase 1 (SCD1) is a key lipogenic enzyme found in the endoplasmic reticulum that catalyzes the conversion of palmitoyl–CoA and stearoyl–CoA to palmitoleoyl–CoA (16:1) and oleoyl–CoA (18:1) (1-3). Palmitoleate and oleate are the major components of triglycerides, membrane phospholipids and cholesterol esters (1). SCD1-knockout mice show improved insulin sensitivity and reduced body fat (1). Disruption of SCD1 in mouse brown adipose tissue strengthens insulin signaling and results in increased translocation of Glut4 to plasma membrane and enhanced uptake of glucose (4). Furthermore, SCD1 is essential for the onset of diet-induced body weight gain (1) and insulin resistance in the liver (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: Stem cell factor (SCF) is a growth factor that is essential for hematopoiesis, melanogenesis and fertility. SCF is also known as mast cell growth factor (MCGF), steel factor (SLF), or kit ligand (KL) (1-3). SCF mediates its biological effects by binding to and activating c-Kit (4). SCF induces dimerization of c-Kit followed by trans-autophosphorylation of the cytoplasmic protein tyrosine kinase domain, leading to subsequent recruitment of signaling proteins, tyrosine phosphorylation of substrates and activation of multiple signaling pathways (5,6). SCF/c-Kit may take part in the growth control of human malignancies (7).