Microsize antibodies for $99 | Learn More >>

Product listing: Atg12 Antibody (Human Specific), UniProt ID O94817 #2010 to BCAR3 Antibody, UniProt ID O75815 #24032

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but is also associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and is directed by a number of autophagy-related (Atg) genes. These proteins are involved in the formation of autophagosomes, which are cytoplasmic vacuoles that are delivered to lysosomes for degradation. The class III type phosphoinositide 3-kinase (PI3K) Vps34 regulates vacuolar trafficking and autophagy (4,5). Multiple proteins associate with Vps34, including p105/Vps15, Beclin-1, UVRAG, Atg14, and Rubicon (6-12). Atg14 and Rubicon were identified based on their ability to bind to Beclin-1 and participate in unique complexes with opposing functions (9-12). Rubicon, which localizes to the endosome and lysosome, inhibits Vps34 lipid kinase activity; knockdown of Rubicon enhances autophagy and endocytic trafficking (11,12). In contrast, Atg14 localizes to autophagosomes, isolation membranes, and ER and can enhance Vps34 activity. Knockdown of Atg14 inhibits starvation-induced autophagy (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Autophagy is a catabolic process that results in the degradation of bulk cytoplasmic contents within autophagosomes and lysosomes. The control of autophagy involves proteins encoded by a set of autophagy-related genes (Atg) that were originally characterized in yeast (1). Research studies in yeast indicate that Atg2 is essential for autophagy and the retrograde transport of Atg9 through an interaction with Atg18 (2-6). Two human Atg2 homologs (Atg2A, Atg2B) are critical for autophagosome formation as silencing of both results in the accumulation of unclosed autophagic structures (7). Starvation-induced autophagy targets Atg2A to the initiation site of autophagosome biogenesis, where it associates with DFCP1, WIPI-1, and other autophagy-related proteins (8).Atg2 proteins also function in lipid droplet metabolism as depletion of both Atg2A and AtgB results in changes in the size, number, and distribution of lipid droplets (7,8). These morphological changes in lipid droplets are not observed in Atg5-depleted cells, suggesting that this function is independent of the role of Atg2 in autophagy (7). Starvation-induced autophagy directs Atg2A (along with Atg14L) to localize to early autophagosomal membranes enriched in PI3P, while another subpopulation of Atg2A and Atg14L localizes to the lipid droplets independent of autophagic status (8). An increase in Atg2A expression during etoposide- and doxorubicin-induced apoptosis suggests that Atg2A may be a useful indicator of topoisomerase II inhibitor-mediated apoptosis (9). Mutations in the corresponding Atg2B gene are associated with gastric and colorectal carcinomas with high microsatellite instability (10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related genes (Atg). Formation of the autophagic vesicles involves two ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (Atg8-PE), which are essential for autophagy and widely conserved in eukaryotes (2). There are at least three Atg8 homologs in mammalian cells, GATE-16, GABARAP, and LC3, that are conjugated by lipids (3,4). Lipid conjugation of Atg8 and its mammalian homologs requires Atg3 (Apg3p/Aut1p in yeast), an ubiquitously expressed E2-like enzyme (5-7). Following C-terminal cleavage by the cysteine protease Atg4, the exposed glycine residue of Atg8 binds to the E1-like enzyme Atg7, is transferred to Atg3, and then conjugated to phophatidylethanolamine. Atg3-deficient mice die within 1 day after birth and are completely defective for the conjugation of Atg8 homlogs and autophagome formation (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents. Control of autophagy was largely discovered in yeast and involves proteins encoded by a set of autophagy-related genes (Atg) (1). Formation of autophagic vesicles requires a pair of essential ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (Atg8-PE), which are widely conserved in eukaryotes (2). Numerous mammalian counterparts to yeast Atg proteins have been described, including three Atg8 proteins (GATE-16, GABARAP, and LC3) and four Atg4 homologs (Atg4A/autophagin-2, Atg4B/autophagin-1, Atg4C/autophagin-3, and Atg4D/autophagin-4) (3-5). The cysteine protease Atg4 is pivotal to autophagosome membrane generation and regulation. Atg4 primes the Atg8 homolog for lipidation by cleaving its carboxy terminus and exposing its glycine residue for E1-like enzyme Atg7. The Atg8 homolog is transferred to the E2-like enzyme Atg3 before forming the Atg8-PE conjugate. During later stages of autophagy, Atg4 can reverse this lipidation event by cleaving PE, thereby recycling the Atg8 homolog (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents. Control of autophagy was largely discovered in yeast and involves proteins encoded by a set of autophagy-related genes (Atg) (1). Formation of autophagic vesicles requires a pair of essential ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (Atg8-PE), which are widely conserved in eukaryotes (2). Numerous mammalian counterparts to yeast Atg proteins have been described, including three Atg8 proteins (GATE-16, GABARAP, and LC3) and four Atg4 homologs (Atg4A/autophagin-2, Atg4B/autophagin-1, Atg4C/autophagin-3, and Atg4D/autophagin-4) (3-5). The cysteine protease Atg4 is pivotal to autophagosome membrane generation and regulation. Atg4 primes the Atg8 homolog for lipidation by cleaving its carboxy terminus and exposing its glycine residue for E1-like enzyme Atg7. The Atg8 homolog is transferred to the E2-like enzyme Atg3 before forming the Atg8-PE conjugate. During later stages of autophagy, Atg4 can reverse this lipidation event by cleaving PE, thereby recycling the Atg8 homolog (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Triglycerides form an important energy store in many living organisms. Adipose tissue serves as the primary storage depot for triglycerides in mammals. Lipolytic enzymes mobilize triglycerides during periods of starvation to provide organisms with necessary energy. Hormone-sensitive lipase (HSL), the first identified lipolytic enzyme, hydrolyzes triglycerides in mammalian adipose tissues (1-3). Additional lipolytic enzymes, including adipose triglyceride lipase (ATGL), have also been discovered. The primary function of ATGL is to catalyze the hydrolysis of the first ester bond of lipid molecules. This enzyme may provide diglyceride substrates for HSL hydrolysis. ATGL is abundantly expressed in murine white and brown adipose tissue, and is highly substrate specific (4). ATGL was independently identified as desnutrin (5) and the TG-hydrolace inducible phospholipase-A2-ζ (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ATP-citrate lyase (ACL) is a homotetramer that catalyzes the formation of acetyl-CoA and oxaloacetate (OAA) in the cytosol, which is the key step for the biosynthesis of fatty acids, cholesterol and acetylcholine, as well as for glucogenesis (1). Nutrients and hormones regulate the expression level and phosphorylation of ATP-citrate lyase (1,2). It is phosphorylated by GSK-3 on Thr446 and Ser450 (3). Ser455 of ATP-citrate lyase has been reported to be phosphorylated by PKA and Akt (4,5). Phosphorylation on Ser455 abolishes the homotropic allosteric regulation by citrate and enhances the catalytic activity of the enzyme (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Sarcoplasmic and endoplasmic reticulum Ca2+ ATPases (SERCA) are members of a highly conserved family of Ca2+ pumps (1). SERCA pumps transport Ca2+ from the cytosol to the sarcoplasmic and endoplasmic reticulum lumen against a large concentration gradient (1). ATP2A1 (SERCA1) is a fast-twitch, skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (2). Research studies have shown that mutations in the ATP2A1 gene cause an autosomal recessive muscle disorder known as Brody myopathy, which is characterized by muscle cramping and impaired muscle relaxation associated with exercise (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Sarcoplasmic and endoplasmic reticulum Ca2+ ATPases (SERCA) are members of a highly conserved family of Ca2+ pumps (1). SERCA pumps transport Ca2+ from the cytosol to the sarcoplasmic and endoplasmic reticulum lumen against a large concentration gradient (1). ATP2A1 (SERCA1) is a fast-twitch, skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (2). Research studies have shown that mutations in the ATP2A1 gene cause an autosomal recessive muscle disorder known as Brody myopathy, which is characterized by muscle cramping and impaired muscle relaxation associated with exercise (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The ATP2A2 (SERCA2) calcium pump is one of several sarcoplasmic and endoplasmic reticulum Ca2+-ATPases responsible for regulating calcium transport across intracellular membranes (1). Multiple isoforms have been isolated, with ATP2A2a (SERCA2a) found predominantly in the sarcoplasmic reticulum of muscle cells and ATP2A2b (SERCA2b) more ubiquitously expressed in the endoplasmic reticulum of most cell types (2). An isoform containing a truncated carboxy region (ATP2A2c) is expressed in epithelial and hematopoietic cell lines and may be involved in monocyte differentiation (3). Post-translational modification of ATP2A2 (SERCA2), including phosphorylation and tyrosine nitration, modify Ca2+ -ATPase activity and calcium transport (4,5). Mutation in the corresponding ATP2A2 (SERCA2) gene results in Darier disease, a skin disorder characterized by the presence of dark, keratotic papules or rash found on the head and torso (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The ATPase inhibitor factor 1 (ATPIF1) gene encodes a mitochondrial ATPase inhibitor that limits ATP depletion when mitochondrial respiration is impaired (1). ATPIF1 becomes activated following a drop in pH, binding to β-F1-ATPase, thereby inhibiting the hydrolase activity of the H+-ATP synthase (1,2). In addition to its role as an ATP hydrolase, ATPIF1 has also been shown to play a regulatory role in cellular energy metabolism by triggering the induction of aerobic glycolysis in cancer cells resulting in their Warburg phenotype (3,4). Research studies demonstrate that the overexpression of ATPIF1 in several human carcinomas further supports its participation in oncogenesis and provides insight into the altered metabolism of cancer cells, which includes the reprogramming of energetic metabolism toward glycolysis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia and Rad3-related kinase (ATR) are PI3 kinase-related kinase (PIKK) family members that phosphorylate multiple substrates on serine or threonine residues that are followed by a glutamine in response to DNA damage or replication blocks (1-3). Despite the essential role of ATR in cell cycle signaling and DNA repair processes, little is known about its activation. ATR was long thought to exist in a constitutively active state in cells, with DNA damage-induced signaling occurring via recruitment of ATR to single stranded DNA and sites of replication stress. Phosphorylation of ATR at serine 428 in response to UV-induced DNA damage has been suggested as a means of activating ATR (4,5). Recent work has shown autophosphorylation of ATR at threonine 1989. Like ATM Ser1981, phosphorylation of ATR Thr1989 occurs in response to DNA damage, indicating that phosphorylation at this site is important in ATR-mediated signaling (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: In response to genomic stress, the ATR interacting protein (ATRIP) binds and is phosphorylated by the DNA damage-and checkpoint-activated kinase ATR (ataxia-telangiectasia mutated and rad3-related). Both ATR and ATRIP are integral for checkpoint signaling and are critical in the DNA repair response (1-3). Direct interaction between ATRIP and replication protein A (RPA) at RPA-coated, single-stranded DNA results in the recruitment of phosphorylated ATR/ATRIP to stalled replication forks and sites of DNA damage (3). ATR/ATRIP coordinate DNA repair and cell cycle progression in conjunction with key regulatory proteins, such as Rad17 and the 9-1-1 complex (4). ATR associated with ATRIP can also be stimulated by topoisomerase II binding protein (TOPBP1), suggesting that ATRIP may regulate both ATR localization and activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Aurora A (AIK) is a cell cycle-regulated Ser/Thr protein kinase that is overexpressed in many tumor cell lines (1-3). Phosphorylation of Aurora A at Thr288 within the kinase activation loop results in a significant increase in its activity and may target the protein for proteasomal degradation during mitosis (4). The closely-related kinase Aurora B (AIM1) has been implicated in multiple mitotic events (5), and siRNA silencing of Aurora B expression results in reduced histone H3 phosphorylation, aberrant chromosome alignment/segregation, and altered survivin localization (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Aurora A (AIK) is a cell cycle-regulated Ser/Thr protein kinase that is overexpressed in many tumor cell lines (1-3). Phosphorylation of Aurora A at Thr288 within the kinase activation loop results in a significant increase in its activity and may target the protein for proteasomal degradation during mitosis (4). The closely-related kinase Aurora B (AIM1) has been implicated in multiple mitotic events (5), and siRNA silencing of Aurora B expression results in reduced histone H3 phosphorylation, aberrant chromosome alignment/segregation, and altered survivin localization (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Bcl-2 family regulates apoptosis in response to a wide range of stimuli through control of mitochondrial cytochrome c release and caspase activation (1-3). Cytosolic Apaf-1 forms a complex with caspase-9 in the presence of cytochrome c and dATP, ultimately leading to caspase-9 activation and subsequent activation of caspase-3. A large number of proteins have been found to interact with Bcl-2 and other family members that have been shown to help regulate apoptosis. Aven was identified in a yeast two-hybrid screen as a bcl-xL interacting protein (4). It also interacts with other anti-apoptotic family members, including Bcl-2, but fails to interact with pro-apopotic proteins Bax and Bak. Aven inhibits apoptosis and enhances anti-apopotic activity of Bcl-xL. It interferes with association with Apaf-1 and activation of caspase-9. Aven overexpression is associated with poor prognosis in acute lymphoblastic leukemia (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Axl, Sky, and Mer are three members of a receptor tyrosine kinase (RTK) family that share a conserved intracellular tyrosine kinase domain and an extracellular domain similar to those seen in cell adhesion molecules. These RTKs bind the vitamin K-dependent protein growth-arrest-specific 6 (Gas6), which is structurally related to the protein S anticoagulation factor (1). Upon binding to its receptor, Gas6 activates phosphatidylinositol 3-kinase (PI3K) and its downstream targets Akt and S6K, as well as NF-κB (2,3). A large body of evidence supports a role for Gas6/Axl signaling in cell growth and survival in normal and cancer cells (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: BACH1, also known as BRIP1 and FANCJ, is a DNA helicase involved in repair of DNA cross-links and double strand breaks (1-3). Interaction between phosphorylated BACH1 and BRCA1 is required for DNA damage-induced checkpoint signaling (3,4). Originally identified as a breast cancer susceptibility gene (1), the BACH1 gene is mutated in Fanconi anemia (5), a recessive disorder characterized by multiple congenital abnormalities, progressive bone marrow failure, and high cancer risk/predisposition. Research investigators have concluded that BACH1 interactions with BRCA1 and the presence of BACH1 mutations in patients with early onset breast cancer indicate that BACH1 may act as a tumor suppressor (6).Phosphorylation of BACH1 at Thr1133 is thought to be involved in regulation of the replication checkpoint and is required for the interaction of BACH1 with TopBP1 (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bad is a proapoptotic member of the Bcl-2 family that promotes cell death by displacing Bax from binding to Bcl-2 and Bcl-xL (1,2). Survival factors, such as IL-3, inhibit the apoptotic activity of Bad by activating intracellular signaling pathways that result in the phosphorylation of Bad at Ser112 and Ser136 (2). Phosphorylation at these sites promotes binding of Bad to 14-3-3 proteins to prevent an association between Bad with Bcl-2 and Bcl-xL (2). Akt phosphorylates Bad at Ser136 to promote cell survival (3,4). Bad is phosphorylated at Ser112 both in vivo and in vitro by p90RSK (5,6) and mitochondria-anchored PKA (7). Phosphorylation at Ser155 in the BH3 domain by PKA plays a critical role in blocking the dimerization of Bad and Bcl-xL (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: BAG6 (BCL2-associated athanogene-6), alternately known as BAT3 (HLA-B-associated transcript 3), was originally identified as a gene within the class III region of the human major histocompatibility complex, but has subsequently been found to exhibit protein chaperone activity. BAG6, in conjunction with other chaperone proteins and ubiquitin ligases, regulates protein stability and insertion of tail-anchored membrane proteins into the endoplasmic reticulum (1-3). The BAT3 complex, consisting of BAG6, TRC35 and Ubl4a localizes to ribosomes synthesizing membrane proteins and facilitates tailed-anchored protein capture by TRC40 and subsequent insertion of the nascent protein in to the ER membrane (4,5). BAG6 also plays a critical role in clearing cells of mis-folded and mis-localized peptides via endoplasmic reticulum-associated degradation and the ubiquitin-proteasome system (1,6,7). BAG6 may also act as a chaperone for glycoproteins through its interaction with DERLIN2 (8).In addition to its role as a chaperone, BAG6 has also been implicated in regulating chromatin structure and gene expression. For example, BAG6 and SET1A act as binding partners for BORIS to effect changes of chromatin structure and gene expression (9). Similarly, increased expression of BAG6 induces p300-mediated acetylation of p53, which is required for DNA damage response (10). BAG6 has also been found to interact with TGF-β, and in so doing acts as a positive regulator of TGF-β1 stimulation of type 1 collagen expression (11). BAG6 also suppresses bone morphogenic protein (BMP) signaling via its interaction with and regulation of small C-terminal domain phosphatase (SCP) that dephosphorylates SMAD proteins resulting in subsequent termination of BMP-mediated events (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Bak is a proapoptotic member of the Bcl-2 family (1). This protein is located on the outer membrane of mitochondria and is an essential component for transduction of apoptotic signals through the mitochondrial pathway (2,3). Upon apoptotic stimulation, an upstream stimulator like truncated BID (tBID) induces conformational changes in Bak to form oligomer channels in the mitochondrial membrane for cytochrome c release. The release of cytochrome c to the cytosol activates the caspase-9 pathway and eventually leads to cell death (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: BAP31 (B-cell receptor-association protein 31) is a transmembrane protein associated with the endplasmic reticulum (ER) and ER-Golgi intermediates and has been implicated in protein trafficking and apoptosis (1,2). During apoptosis Bap31 is cleaved by caspase-8 at two carboxy-terminal sites which can then direct apoptotic signals between the ER and mitochondria (2-4). Association of BAP31 with the anti-apoptotic proteins Bcl-2 or Bcl-xL could function to regulate this ER-mitochondrial pathway (2,5). Several studies have shown that BAP31 can control the trafficking of select proteins between the ER and Golgi apparatus and can affect the transport of proteins to the cell surface (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Fibroblast growth factors are a family of broad-spectrum growth factors influencing a plethora of cellular activities. The interaction of at least 23 ligands, 4 receptors and multiple coreceptors provides a dramatic complexity to a signaling system capable of effecting a multitude of responses (1,2). Basic fibroblast growth factor (bFGF or FGF2), initially identified as a mitogen with prominent angiogenic properties, is now recognized as a multifunctional growth factor (3). It is clear that bFGF produces its biological effects in target cells by signaling through cell-surface FGF receptors. bFGF binds to all four FGF receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic downstream target proteins, including FRS-2, PLC and Crk (4,5). The FGF signaling pathway appears to play a significant role not only in normal cell growth regulation but also in tumor development and progression (6).Acidic FGF (aFGF or FGF1) is another extensively investigated protein of the FGF family. aFGF shares 55% DNA sequence homology with bFGF. These two growth factors are ubiquitously expressed and exhibit a wide spectrum of similiar biological activities with quantitative differences likely due to variation in receptor affinity or binding (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: BCAR3 is a member of the novel SH2-containing protein (NSP) family (1). It was identified as a gene product involved in anti-estrogen resistance in the context of breast cancer (2). Like other members of this family, BCAR3 has been shown to interact with the family member, CAS. The C terminal Cdc25 homolgy domain of BCAR3 interacts tightly with the FAT domain of p130Cas (3) and promotes the association of p130cas with Src kinase (4) to activate related signaling pathways. Overexpression of BCAR3 leads to the activation of a wide range of downstream signaling proteins including PI3K, rac, PAK1, and cyclin D1 (5-7). The main role of BCAR3 is to promote cell motility and regulate cytoskeletal remodeling and adhesion through its effect on p130cas and Src kinase (8-10). BCAR3 also has been implicated in playing an inhibitory role on TGF-β/SMAD signaling, which is associated with favorable disease outcomes (11).