Microsize antibodies for $99 | Learn More >>

Product listing: BCAT1 Antibody, UniProt ID P54687 #12822 to BTAF1 Antibody, UniProt ID O14981 #2637

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: BCAT1 and BCAT2 are cytosolic and mitochondrial branched chain aminotransferases, respectively (1,2). Research studies have implicated BCAT1 in distant metastasis in patients with advanced colorectal cancer (3). Disruption of BCAT2 in mice leads to higher levels of plasma branched-chain amino acids, reduced adiposity and body weight, and increased energy expenditure, suggesting its role in regulating insulin sensitivity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: BCAT1 and BCAT2 are cytosolic and mitochondrial branched chain aminotransferases, respectively (1,2). Research studies have implicated BCAT1 in distant metastasis in patients with advanced colorectal cancer (3). Disruption of BCAT2 in mice leads to higher levels of plasma branched-chain amino acids, reduced adiposity and body weight, and increased energy expenditure, suggesting its role in regulating insulin sensitivity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bcl-xL prevents apoptosis through two different mechanisms: heterodimerization with an apoptotic protein inhibits its apoptotic effect (1,2) and formation of mitochondrial outer membrane pores help maintain a normal membrane state under stressful conditions (3). Bcl-xL is phosphorylated by JNK following treatment with microtubule-damaging agents such as paclitaxel, vinblastine and nocodazole (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: B-cell CLL/lymphoma 9 protein (BCL9) is a widely conserved adaptor protein that functions as a transcriptional co-activator in the canonical Wnt signaling pathway (1,2). BCL9 is a core component of a nuclear protein complex (BCL9, LEF/TCF, β-catenin and PYGO) that regulates the transcription of Wnt-dependent target genes (3). Research studies show that disrupting the interaction between BCL9 and β-catenin suppresses oncogenic Wnt signaling, suggesting a potential avenue for therapeutic intervention in Wnt-mediated cancers (4). BCL9 promotes association of PYGO with the tail of histone H3 that has been methylated at lysine 4 (H3K4me), suggesting a specific chromatin remodeling function for BCL9 in the Wnt signaling pathway (5). Research studies in colon epithelium and adenocarcinomas suggest that BCL9 is required to mediate Wnt-dependent stem cell behaviors, such as epithelial-mesenchymal transition (6). Crystallography studies revealed that BCL9 contains a β-catenin binding site that is distinct from the majority of known β-catenin binding partners, making it an attractive target for therapeutic drug development (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: The Bcr gene was orginally identified by its presence in the chimeric Bcr-Abl oncogene (1). The amino-terminal region of Bcr contains an oligomerization domain, a serine/threonine kinase domain, and a region that binds SH2 domains. The middle of the protein has a PH domain and a region of sequence similarity to the guanine nucleotide exchange factors for the Rho family of GTP binding proteins. The carboxy-terminal region may be involved in a GTPase activating function for the small GTP-binding protein Rac (2,3). The function of wild type Bcr in cells remains unclear. PDGF receptor may use Bcr as a downstream signaling mediator (4). Research studies have shown that the Bcr-Abl fusion results in production of a constitutively active tyrosine kinase, which causes chronic myelogenous leukemia (CML) (5). Tyr177 of Bcr is phosphorylated in the Bcr-Abl fusion protein, which plays an important role in transforming the activity of Bcr-Abl (6). Phosphorylated Tyr177 provides a docking site for Gab2 and GRB2 (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of proteins activated in response to nutrient deprivation and in neurodegenerative conditions (1). One of the proteins critical to this process is Beclin-1, the mammalian orthologue of the yeast autophagy protein Apg6/Vps30 (2). Beclin-1 can complement defects in yeast autophagy caused by loss of Apg6 and can also stimulate autophagy when overexpressed in mammalian cells (3). Mammalian Beclin-1 was originally isolated in a yeast two-hybrid screen for Bcl-2 interacting proteins and has been shown to interact with Bcl-2 and Bcl-xL, but not with Bax or Bak (4). While Beclin-1 is generally ubiquitously expressed, research studies have shown it is monoallelically deleted in 40-75% of sporadic human breast and ovarian cancers (5). Beclin-1 is localized within cytoplasmic structures including the mitochondria, although overexpression of Beclin-1 reveals some nuclear staining and CRM1-dependent nuclear export (6). Investigators have demonstrated that Beclin-1-/- mice die early in embryogenesis and Beclin-1-/+ mice have a high incidence of spontaneous tumors. Stem cells from the null mice demonstrate an altered autophagic response, although responses to apoptosis appeared normal (7). Researchers have also found that overexpression of Beclin-1 in virally infected neurons in vivo resulted in significant protection against Sindbis virus-induced disease and neuronal apoptosis (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Bid is a pro-apoptotic “BH3 domain-only” member of the Bcl-2 family originally discovered to interact with both the anti-apoptotic family member Bcl-2 and the pro-apoptotic protein Bax (1). Bid is normally localized in the cytosolic fraction of cells as an inactive precursor and is cleaved at Asp60 by caspase-8 during Fas signaling, leading to translocation of the carboxyl terminal p15 fragment (tBid) to the mitochondrial outer membrane (2-4). Translocation of Bid is associated with release of cytochrome c from the mitochondria, leading to complex formation with Apaf-1 and caspase-9 and resulting in caspase-9 activation (5-7). Thus, Bid relays an apoptotic signal from the cell surface to the mitochondria triggering caspase activation (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Bid is a pro-apoptotic “BH3 domain-only” member of the Bcl-2 family originally discovered to interact with both the anti-apoptotic family member Bcl-2 and the pro-apoptotic protein Bax (1). Bid is normally localized in the cytosolic fraction of cells as an inactive precursor and is cleaved at Asp60 by caspase-8 during Fas signaling, leading to translocation of the carboxyl terminal p15 fragment (tBid) to the mitochondrial outer membrane (2-4). Translocation of Bid is associated with release of cytochrome c from the mitochondria, leading to complex formation with Apaf-1 and caspase-9 and resulting in caspase-9 activation (5-7). Thus, Bid relays an apoptotic signal from the cell surface to the mitochondria triggering caspase activation (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bif-1/SH3GLB1/Endophilin-B1 is a member of the endophilin B family that was originally identified as a Bax binding protein through yeast two-hybrid screening (1,2). Bif-1 does not have significant homology to other Bcl-2 family members, but rather contains an N-terminal Bin-Amphiphysin-Rvs (BAR) domain, typically involved in membrane dynamics, and a C-terminal SH3 domain. Overexpression of Bif-1 promotes Bax conformational change and apoptosis (2,3). Likewise, loss of Bif-1 inhibits Bax and Bak activation, cytochrome c release, and caspase activation (3). Bif-1 is localized to membranes of intracellular organelles and has been suggested to play a role in membrane dynamics, including that during autophagy. Bif-1 directly binds to UVRAG, forming a complex with Beclin-1, resulting in increased PI3-kinase class III/Vps34 activity required for autophagosome maturation (4). Inhibition of GSK-3β, as seen during nutrient deprivation, results in increased expression of Bif-1, and can contribute to autophagic cell death (5). Research studies have shown that loss of Bif-1 promotes tumorigenesis, and decreased expression of Bif-1 has been noted in several cancer types (6-11).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Bik/Nbk (Bcl-2-interacting killer/natural born killer) is a potent pro-apoptotic protein belonging to a group of Bcl-2 family members that includes Bad, Bid, Bim, Hrk, and Noxa, containing a BH3 domain but lacking other conserved domains, BH1 or BH2 (1,2). Functionally, Bik is able to bind to and antagonize anti-apoptotic Bcl-2 family members including Bcl-2, Bcl-xL, and viral homologs E1B-19K and EBV-BHFR1. The BH3 domain of Bik is essential for its apoptotic activity and interaction with survival proteins (3). Phosphorylation of Bik is correlated with an increase in its pro-apoptotic activity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bim/Bod is a pro-apoptotic protein belonging to the BH3-only group of Bcl-2 family members including Bad, Bid, Bik, Hrk, and Noxa that contain a BH3 domain but lack other conserved BH1 or BH2 domains (1,2). Bim induces apoptosis by binding to and antagonizing anti-apoptotic members of the Bcl-2 family. Interactions have been observed with Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bfl-1, and BHRF-1 (1,2). Bim functions in regulating apoptosis associated with thymocyte negative selection and following growth factor withdrawal, during which Bim expression is elevated (3-6). Three major isoforms of Bim are generated by alternative splicing: BimEL, BimL, and BimS (1). The shortest form, BimS, is the most cytotoxic and is generally only transiently expressed during apoptosis. The BimEL and BimL isoforms may be sequestered to the dynein motor complex through an interaction with the dynein light chain and released from this complex during apoptosis (7). Apoptotic activity of these longer isoforms may be regulated by phosphorylation (8,9). Environmental stress triggers Bim phosphorylation by JNK and results in its dissociation from the dynein complex and increased apoptotic activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bridging integrator 1 (BIN1, AMPHL) is an adaptor protein and putative tumor suppressor expressed as multiple isoforms due to alternative splicing. The BIN1 protein was originally identified as a Myc box-interacting protein with structural similarity to the synaptic vesicle protein amphiphysin (1). BIN1 protein structure contains an amino-terminal amphipathic helix and a BAR domain that is involved in sensing membrane curvature. The protein also includes a Myc-binding domain and a SH3 domain, which are implicated in protein-protein interactions (1). Multiple BIN1 isoforms range in size from approximately 45 to 65 kDa, with the nuclear BIN1 isoform found mostly in skeletal muscle and the cytoplasmic IIA isoform expressed in axon initial segments and nodes of Ranvier of the brain (2,3). Corresponding BIN1 gene mutations and incorrect splicing can lead to impaired BIN1 membrane-tabulating and protein binding activities, resulting in development of autosomal recessive centronuclear myopathy and myotonic dystrophy (4,5). Genome-wide association studies link the BIN1 gene with late onset Alzheimer disease (AD) and increased BIN1 mRNA expression is seen in AD brains (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside the ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including BiP. BiP was identified as an immunoglobulin heavy chain binding protein in pre-B cells (1,2). It was also found to be induced at the protein level by glucose starvation (3). When protein folding is disturbed inside ER, BiP synthesis is increased. Subsequently, BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Bit1 is a mitochondrial protein discovered as a regulator of anoikis, a process of apoptosis triggered by the loss of cell adhesion to the extracellular matrix (1,2). Like several other mitochondrial apoptotic regulators (Cytochrome c, Smac, HtrA2, AIF, EndoG), Bit1 is released into the cytoplasm during apoptosis (1,3). Cytoplasmic Bit1 associates with the Groucho family of transcriptional regulator AES (1,4). Interaction between Bit1 and AES promotes apoptosis, and this complex is suppressed by integrin mediated cell attachment.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Blk is a Src family protein tyrosine kinase expressed in all stages of B cell development (1,2). Activation of B cells by various ligands is accompanied by activation of Blk (3). It has been suggested that Blk is involved in the control of B cell differentiation and proliferation (4,5). Blk transcripts have also been detected in human thymocytes, but not in mature T cells, implicating that Blk may play an important role in thymopoiesis (6). Blk function may be redundant, however, as mice that do not express Blk are not impaired with respect to B cell development and immune response (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: BLM, a member of the RecQ family of DNA helicases, is part of the BRCA1-associated genome surveillance complex (BASC) that responds to DNA damage, stalled replication forks and S phase arrest (1-4). Phosphorylation of BLM helicase at Thr99 and Thr122 occurs in response to genotoxic stress (4), and phosphorylation of Ser144 appears to be important in regulating chromosome stability during mitosis (5). Typical BLM protein resides in the nucleus and forms part of a dynamic protein complex that acts in response to DNA damage during specific periods of the cell cycle (6). Although RecQ helicases are rarely considered as essential enzymes, they function at the interface between DNA recombination and repair and are required for global genome stability maintenance. Mutations in BLM helicase are responsible for development of Bloom Syndrome, a recessive genetic disorder clinically characterized by short stature, immunodeficiency and elevated risk of malignancy (7). Similar alterations to genes encoding the related RecQ helicases RecQ4 and WRN also result in recessive genetic disorders associated with genomic instability (8,9). Cells from Bloom Syndrome patients exhibit genomic instability and increased frequency of sister chromatid exchange (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) were first identified as molecules that can induce ectopic bone and cartilage formation (1,2). BMPs belong to the TGF-β superfamily, playing many diverse functions during development (3). BMPs are synthesized as precursor proteins and then processed by cleavage to release the C-terminal mature BMP. BMPs initiate signaling by binding to a receptor complex containing type I and type II serine/threonine receptor kinases that then phosphorylate Smad (mainly Smad1, 5, and 8), resulting in the translocation of Smad into the nucleus. BMP was also reported to activate MAPK pathways in some systems (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: BMPR2 is a type II serine/threonine receptor kinase that binds to an array of secreted bone morphogenetic proteins (BMPs). BMPs belong to the superfamily of TGF-β ligands that modulate gastrulation, neurogenesis, chondrogenesis, interdigital cell death, and bone morphogenesis (1-5). In contrast to the TGF-β type II receptor, BMPR2 contains an extended carboxyl-terminal region that interacts with multiple signaling molecules to modulate the responsiveness of target genes to BMPs (6,7). BMP signaling requires oligomerization of both type I and type II receptors to elicit a functional response of target genes. BMP binding to type I and II receptors induces Smad1/5/8 phosphorylation which is required for the activation of target genes (7). In vitro and in vivo evidence suggests that defects in BMPR2 may contribute to pulmonary hypertension, inflammation, and endothelial injury (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: BNIP3 (Bcl-2/E1B-19kDa interacting protein 3) is a pro-apoptotic mitochondrial protein and Bcl-2 family member that contains a Bcl-2 homology 3 (BH3) domain and a carboxyl-terminal transmembrane (TM) domain (1-3). While BNIP3 has a predicted molecular weight of about 22 kDa, it runs anomalously on SDS-PAGE and includes a band of around 60 kDa that may be a dimeric form that is not reduced (2). BNIP3 associates with anti-apoptotic family members Bcl-2, Bcl-xL, and the adenovirus homologue E1B-19kDa. BNIP3 is distinct from other Bcl-2 family members that contain only the BH3 domain in that the TM domain, and not the BH3 domain, is required for mitochondrial targeting and pro-apoptotic activity (4). In addition to apoptosis, BNIP3 has been implicated in necrosis (5) and autophagy (6-11). In hypoxic conditions, BNIP3 can induce mitochondrial autophagy (mitophagy) by disrupting the Bcl-2-Beclin-1 complex (9). BNIP3 can also promote mitophagy by triggering the translocation of the E3 ubiquitin ligase Parkin to the mitochondria (10) or by directly binding LC3 on the autophagosome (11). BNIP3 may also localize to the endoplasmic reticulum (ER) where it can selectively induce the autophagic clearance of ER (ERphagy) (11). Increased expression of BNIP3 under hypoxic conditions is mainly regulated by the transcription factor HIF-1α (12-14). Silencing of the BNIP3 promoter by methylation has been observed in several types of cancer cells and may play an important role in their survival (14-18).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: B-cell Oct binding factor-1 (BOB-1/OBF-1) is a B-cell restricted transcriptional coactivator. BOB-1 facilitates transactivation of immunoglobulins and other B-cell specific genes through the binding and activation of the transcription factors Oct-1 and Oct-2 (1-4). Research studies have demonstrated that BOB-1 expression is required for antigen-dependent B-cell maturation (5-7). In pathological conditions such as classical Hodgkin’s disease, loss of BOB-1 expression is thought, in part, to contribute to the defect in immunoglobulin gene expression by Hodgkin and Reed Sternberg cells (8,9). In the context of multiple myeloma, overexpression of BOB-1 has been shown to contribute to malignant plasma cell cell growth, in part, through enhanced transactivation of TNFRSF17/BCMA (10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The breast cancer susceptibility proteins BRCA1 and BRCA2 are frequently mutated in cases of hereditary breast and ovarian cancers and have roles in multiple processes related to DNA damage, repair, cell cycle progression, transcription, ubiquitination, and apoptosis (1-4). BRCA2 has been shown to be required for localization of Rad51 to sites of double stranded breaks (DSBs) in DNA, and cells lacking BRCA1 and BRCA2 cannot repair DSBs through the Rad51-dependent process of homologous recombination (HR) (5). Numerous DNA damage-induced phosphorylation sites on BRCA1 have been identified, including Ser988, 1189, 1387, 1423, 1457, 1524, and 1542, and kinases activated in a cell cycle-dependent manner, including Aurora A and CDK2, can also phosphorylate BRCA1 at Ser308 and Ser1497, respectively (6-10). Cell cycle-dependent phosphorylation of BRCA2 at Ser3291 by CDKs has been proposed as a mechanism to switch off HR as cells progress beyond S-phase by blocking the carboxy terminal Rad51 binding site (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The modulation of chromatin structure is an essential component in the regulation of transcriptional activation and repression. Modifications can be made by at least two evolutionarily conserved strategies, through the disruption of histone-DNA contacts by ATP-dependent chromatin remodelers, or by histone tail modifications including methylation and acetylation. One of the four classes of ATP-dependent histone remodelers is the SWI/SNF complex, the central catalytic subunit of which is Brg1 or the highly related protein hBRM (1). This SWI/SNF complex contains varying subunits but its association with either Brg1 or hBRM remains constant (1). SWI/SNF complexes have been shown to regulate gene activation, cell growth, the cell cycle and differentiation (1). Brg1/hBRM have been shown to regulate transcription through enhancing transcriptional activation of glucocorticoid receptors (2). Although usually associated with transcriptional activation, Brg1/hBRM have also been found in complexes associated with transcriptional repression including with HDACs, Rb and Tif1β (3-5). Brg1/hBRM plays a vital role in the regulation of gene transcription during early mammalian embryogenesis. In addition, Brg1/hBRM also play a role as a tumor suppressors and Brg1 is mutated in several tumor cell lines (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Butyrate response factor 1 (BRF1; also known as EGF response factor 1 [ERF1], TIS11B, ZFP36L1) and butyrate response factor 2 (BRF2; also known as EGF response factor 2 [ERF2], TIS11D, ZFP36L2) both belong to the TIS11 family of CCCH zinc-finger proteins (1). This family of proteins, which also includes tristetraprolin (TTP), bind to AU-rich elements (ARE) found in the 3'-untranslated regions of mRNAs and promote de-adenylation and rapid degradation by the exosome (2,3). These proteins play a critical role in cell growth control by regulating the mRNA turnover of multiple cytokines, growth factors and cell cycle regulators, including GM-CSF, TNFα, IL-2, IL-3 and IL-6 (4,5). Deregulated ARE-mRNA stability can contribute to both inflammation and oncogenic transformation (6-8). Insulin-induced stabilization of ARE-containing transcripts is mediated by Akt/PKB phosphorylation of BRF1 at Ser92, which results in binding by 14-3-3 protein and inactivation of BRF1 (9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The modulation of chromatin structure is an essential component in the regulation of transcriptional activation and repression. Modifications can be made by at least two evolutionarily conserved strategies, through the disruption of histone-DNA contacts by ATP-dependent chromatin remodelers, or by histone tail modifications including methylation and acetylation. One of the four classes of ATP-dependent histone remodelers is the SWI/SNF complex, the central catalytic subunit of which is Brg1 or the highly related protein hBRM (1). This SWI/SNF complex contains varying subunits but its association with either Brg1 or hBRM remains constant (1). SWI/SNF complexes have been shown to regulate gene activation, cell growth, the cell cycle and differentiation (1). Brg1/hBRM have been shown to regulate transcription through enhancing transcriptional activation of glucocorticoid receptors (2). Although usually associated with transcriptional activation, Brg1/hBRM have also been found in complexes associated with transcriptional repression including with HDACs, Rb and Tif1β (3-5). Brg1/hBRM plays a vital role in the regulation of gene transcription during early mammalian embryogenesis. In addition, Brg1/hBRM also play a role as a tumor suppressors and Brg1 is mutated in several tumor cell lines (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The modulation of chromatin structure is an essential component in the regulation of transcriptional activation and repression. Modifications can be made by at least two evolutionarily conserved strategies, through the disruption of histone-DNA contacts by ATP-dependent chromatin remodelers, or by histone tail modifications including methylation and acetylation. One of the four classes of ATP-dependent histone remodelers is the SWI/SNF complex, the central catalytic subunit of which is Brg1 or the highly related protein hBRM (1). This SWI/SNF complex contains varying subunits but its association with either Brg1 or hBRM remains constant (1). SWI/SNF complexes have been shown to regulate gene activation, cell growth, the cell cycle and differentiation (1). Brg1/hBRM have been shown to regulate transcription through enhancing transcriptional activation of glucocorticoid receptors (2). Although usually associated with transcriptional activation, Brg1/hBRM have also been found in complexes associated with transcriptional repression including with HDACs, Rb and Tif1β (3-5). Brg1/hBRM plays a vital role in the regulation of gene transcription during early mammalian embryogenesis. In addition, Brg1/hBRM also play a role as a tumor suppressors and Brg1 is mutated in several tumor cell lines (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of various nuclear processes, such as gene expression, DNA replication, and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits with a single molecule of the ATPase catalytic subunit BRM or BRG1, but not both. The activities of these two subunits drive the disruption of histone-DNA contacts that lead to changes in accessibility of crucial regulatory elements within chromatin (2-5). The BRM/BRG1 containing SWI/SNF complexes are recruited to target promoters by transcription factors, such as nuclear receptors, p53, RB, and BRCA1 to regulate gene activation, cell growth, the cell cycle, and differentiation processes (1,6-9). BRM and BRG1 are also considered to be tumor suppressors and their expression levels are severely reduced in several cancer cell lines (10-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bone sialoprotein II (BSP II) exists as a secreted protein in extracellular matrix of the skeleton (1-2). BSP II is part of the small integrin binding ligand N-linked glycoprotein (SIBLING) family and its role is crucial for cell to matrix adhesion as well as between two active protein complexes (3). Flexible binding capacity of BSP II also allows it to rapidly associate with various proteins, calcium, and mineralized phases of developing bone (3-5). BSP II plays a central role in the initiation of hydroxyapatite microcalcification of breast cancer cells that contributes to the pathogenesis of bone metastasis (4,6,7). Recent evidence suggests that the downregulation of BSP II may lead to the reduced formation of metastatic lesions and bone metastasis in a human breast cancer model (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: B-TATA binding protein-associated factor 1 (BTAF1) is a human homolog of the yeast protein modifier of transcription 1 (MOT1) (1). BTAF1 negatively regulates transcription through interaction with TATA binding protein (TBP), an important component of the B-TFIID complex (2,3). BTAF1 is a member of the SNF2 family of ATPases that utilizes ATP to remove TBP from B-TFIID, thereby preventing formation of the transcription pre-initiation complex (PIC) (3-5). BTAF1 actively removes TBP from DNA, which prevents non-specific TBP-DNA interactions and promotes disassembly of inactive forms of the PIC. This activity is thought to be critical for maintaining a pool of free TBP that is necessary for the assembly of the PIC during transcription activation (6,7).