20% off purchase of 3 or more products* | Learn More >>

Product listing: Desmin Antibody, UniProt ID P17661 #4024 to Drosophila ICE (drICE) Antibody, UniProt ID O01382 #13085

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments and microtubules. Major types of intermediate filaments are distinguished and expressed in particular cell types: cytokeratins (epithelial cells), glial fibrillary acidic protein or GFAP (glial cells), desmin (skeletal, visceral and certain vascular smooth muscle cells), vimentin (mesenchyme origin) and neurofilaments (neurons). GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). Vimentin is present in sarcomas, but not carcinomas, and its expression is examined relative to other markers to distinguish between the two forms of neoplasm (3). Desmin is a myogenic marker expressed in early development that forms a network of filaments that extends across the myofibril and surrounds Z discs. The desmin cytoskeleton provides a connection among myofibrils, organelles and the cytoskeleton (4). Desmin knockout mice develop cardiomyopathy, skeletal and smooth muscle defects (5). In humans, desmin related myopathies might be caused by mutations in the corresponding desmin gene or in proteins with which desmin interacts, including αB-crystallin and synemin. Disorganized desmin filaments and the accumulation of protein aggregates comprised predominantly of desmin characterize desmin-related myopathies (reviewed in 6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dexras1 (Ras dexamethasone induced 1) belongs to the Ras superfamily of GTPases and was initially identified as a dexamethasone inducible gene (1,2). Dexras1 reportedly regulates several distinct signal transduction pathways, including MAPK signaling, NMDA receptor-nitric oxide-mediated signaling, and pathways involving adenylyl cyclases (3-5). Dexras1 can directly modulate FE65-APP-mediated transcription and regulate the photic sensitivity of the mammalian circadian clock (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Human DFF45 and its mouse homologue ICAD function in normal cells as chaperones for caspase-activated deoxyribonuclease (DFF40 or CAD) during its synthesis (1). The association of DFF45 (or its isoform DFF35) with DFF40 inhibits the DNAse activity of the latter (1-4). In vitro, DFF45 has been shown to be the target of several caspases, including caspase-3, -6, -7, -8 and granzyme B (3). In vivo, caspase-3 is believed to be the primary enzyme responsible for processing DFF45 and release of its carboxy-terminal fragment (3,5). The cleavage of DFF45 inactivates its inhibitory function on DFF40 and causes nuclear DNA degradation by DFF40, leading to cell death (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: DHX29 is an ATP-dependent RNA helicase that belongs to the DEAD-box helicase family (DEAH subfamily). DHX29 contains one central helicase and one helicase at the carboxy-terminal domain (1). Its function has not been fully established but DHX29 was recently shown to facilitate translation initiation on mRNAs with structured 5' untranslated regions (2). DHX29 binds 40S subunits and hydrolyzes ATP, GTP, UTP, and CTP. Hydrolysis of nucleotide triphosphates by DHX29 is strongly stimulated by 43S complexes and is required for DHX29 activity in promoting 48S complex formation (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DHX29 is an ATP-dependent RNA helicase that belongs to the DEAD-box helicase family (DEAH subfamily). DHX29 contains one central helicase and one helicase at the carboxy-terminal domain (1). Its function has not been fully established but DHX29 was recently shown to facilitate translation initiation on mRNAs with structured 5' untranslated regions (2). DHX29 binds 40S subunits and hydrolyzes ATP, GTP, UTP, and CTP. Hydrolysis of nucleotide triphosphates by DHX29 is strongly stimulated by 43S complexes and is required for DHX29 activity in promoting 48S complex formation (2).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Formins are a family of large multidomain actin nucleation/polymerization proteins characterized by their catalytic FH2 domains. The mammalian diaphanous-related formin (mDia/diap) subfamily, including mDia1/diap1, mDia2/diap3 and mDia3/diap2, are effectors of Rho family small GTPases. In response to Rho, mDia/diap proteins are involved in the regulation of multiple cell functions including cytoskeletal dynamics, migration, adhesion, polarity and cell shape (reviewed in 1,2).mDia1/diap1 is activated by GTP-bound Rho, leading to Rho-associated kinase (ROCK)-dependent stress fiber formation (3,4). Rho activation of mDia1 has also been shown to regulate serum response factor (SRF)-dependent transcription (5), and has been implicated in human cancer phenotypes such as ras-mediated transformation, metastasis and invasion (reviewed in 6).mDia3/diap2, activated by the Rho family small GTPase cdc42, regulates the attachment of microtubules to the kinetochore during mitosis in mammalian cells (7).Rho-dependent activation of mDia2/diap3 is important in assembly of the contractile ring during cytokinesis (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Formins are a family of large multidomain actin nucleation/polymerization proteins characterized by their catalytic FH2 domains. The mammalian diaphanous-related formin (mDia/diap) subfamily, including mDia1/diap1, mDia2/diap3 and mDia3/diap2, are effectors of Rho family small GTPases. In response to Rho, mDia/diap proteins are involved in the regulation of multiple cell functions including cytoskeletal dynamics, migration, adhesion, polarity and cell shape (reviewed in 1,2).mDia1/diap1 is activated by GTP-bound Rho, leading to Rho-associated kinase (ROCK)-dependent stress fiber formation (3,4). Rho activation of mDia1 has also been shown to regulate serum response factor (SRF)-dependent transcription (5), and has been implicated in human cancer phenotypes such as ras-mediated transformation, metastasis and invasion (reviewed in 6).mDia3/diap2, activated by the Rho family small GTPase cdc42, regulates the attachment of microtubules to the kinetochore during mitosis in mammalian cells (7).Rho-dependent activation of mDia2/diap3 is important in assembly of the contractile ring during cytokinesis (8,9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Dicer is a member of the RNase III family that specifically cleaves double-stranded RNAs to generate microRNAs (miRNAs) (1). After long primary transcript pri-miRNAs are processed to stem-looped pre-miRNAs by Drosha (2), pre-miRNAs are transported to the cytoplasm and further processed by Dicer to produce 22-nucleotide mature miRNAs (3). The mature miRNA then becomes a part of the RNA-Induced Silencing Complex (RISC) and can bind to the 3' UTR of the target mRNA (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The putative transcription factor DIDO1 (death inducer obliterator 1, also termed DIO-1 or DATF1) contains a pair of zinc finger motifs and is upregulated by apoptotic stimuli. DIDO1 is expressed in the developing limb and may play a role in controlling programmed cell death during development (1-3). Nuclear translocation of DIDO1 during apoptosis is associated with its apoptotic activity (2). Alternative splicing produces the DIDO-1, -2 and -3 isoforms (also termed DIO-1, -2, -3), whose targeted disruption in mice produces a phenotype similar to myelodysplastic/myeloproliferative disease (MPS/MPD) in humans (3). DIDO3, the largest of the splice variants, is associated with the centrosome and plays a role in mitotic checkpoint and chromosome stability (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Parkinson's disease (PD) is characterized by the presence of Lewy bodies (intracellular inclusions) and by the loss of dopaminergic neurons. Research studies have shown that mutations in α-synuclein, Parkin, and DJ-1 are linked to PD (1). α-synuclein is a major component of the aggregates found in Lewy bodies. Parkin is involved in protein degradation through the ubiquitin-proteasome pathway, and investigators have shown that mutations in Parkin cause early onset of PD (1). Loss-of-function mutations in DJ-1 cause early onset of PD, but DJ-1 is associated with multiple functions: it cooperates with Ras to increase cell transformation, it positively regulates transcription of the androgen receptor, and it may function as an indicator of oxidative stress (2-5). Dopamine D2 receptor-mediated functions are greatly impaired in DJ-1 (-/-) mice, resulting in reduced long-term depression (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dickkopf (DKK) family proteins consist of four members DKK1, DKK2, DKK3 and DKK4 that function as secreted Wnt antagonists by inhibiting Wnt coreceptors LRP5 and LRP6 (1,2). DKKs contain two cysteine-rich domains in which the positions of 10 cysteine residues are well conserved (3). Their expression is both temporally and spatially regulated during animal development (4). DKKs also bind with high affinity to transmembrane proteins Kremen1 and 2, which themselves also modulate Wnt signaling (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dickkopf (DKK) family proteins consist of four members DKK1, DKK2, DKK3 and DKK4 that function as secreted Wnt antagonists by inhibiting Wnt coreceptors LRP5 and LRP6 (1,2). DKKs contain two cysteine-rich domains in which the positions of 10 cysteine residues are well conserved (3). Their expression is both temporally and spatially regulated during animal development (4). DKKs also bind with high affinity to transmembrane proteins Kremen1 and 2, which themselves also modulate Wnt signaling (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: DLK1 (delta-like-1), also known as fetal antigen 1 (FA1) and preadipocyte factor 1 (pref-1), is a member of the epidermal growth factor (EGF)-like family of proteins, containing six tandem EGF-like repeats (1,2). DLK1 is a paternally expressed, imprinted gene that plays an important role in normal development and in the maintenence of homeostasis of adipose tissue mass (3). DLK1 deficient mice display growth retardation, obesity, skeletal malformation, and increased serum lipid metabolites (4). It has been reported that the ectodomain of DLK1 is shredded from the cell surface and inhibits adipocyte differentiation ( 5-7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: α-ketoglutarate dehydrogenase complex is a rate-regulating enzyme in the Krebs Cycle (1). Dihydrolipoamide succinyltransferase (DLST) is a key subunit in this complex (2). Reduction of DLST increases reactive oxygen species production, suggesting its role in oxidative stress (2). Research has shown that deficiency of DLST in mice is linked to increased oxidative stress in mitochondria, a process that may be involved in the pathogenesis of Alzheimer's disease (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA methyltransferase 1 (DNMT1)-associated protein 1 (DMAP1) is a nuclear protein that functions in transcriptional repression and DNA repair. DMAP1 was first identified as an activator of DNMT1 methyltransferase activity (1). Both DMAP1 and DNMT1 are targeted to replication foci during S phase and function to transfer proper methylation patterns to newly synthesized DNA during replication (1). In late S phase, DMAP1-DNMT1 co-operate with a p33ING1-Sin3-HDAC2 complex to maintain pericentric heterochromatin by deacetylating histones, methylating histone H3 at Lys9, and methylating DNA (1,2). The DMAP1 protein is also part of the TIP60-p400 complex, a histone acetyltransferases (HAT) and chromatin-remodeling complex that functions in DNA repair (3,4). Upon DNA damage, the TIP60-p400 complex acetylates histone H4 at Lys16 to induce chromatin relaxation and activation of the ATM kinase. DMAP1 is required for DNA-damage induced TIP60-p400-mediated histone acetylation, and deletion of DMAP1 impairs AMT function (5). DMAP1-DNMT1 may also methylate DNA at sites of DNA damage during homologous recombination, which results in gene silencing (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: DNA-dependent protein kinase (DNA-PK) is an important factor in the repair of double-stranded breaks in DNA. Cells lacking DNA-PK or in which DNA-PK is inhibited fail to show proper nonhomologous end-joining (NHEJ) (1-7). DNA-PK is composed of two DNA-binding subunits (Ku70 and Ku86) and one 450 kDa catalytic subunit (DNA-PKcs) (8). It is thought that a heterodimer of Ku70 and Ku86 binds to double-stranded DNA broken ends before DNA-PKcs binds and is activated (1,9). Activated DNA-PKcs is a serine/threonine kinase that has been shown to phosphorylate a number of proteins in vitro, including p53, transcription factors, RNA polymerase, and Ku70/Ku86 (10,11). DNA-PKcs autophosphorylation at multiple sites, including Thr2609 and Ser2056, results in an inactivation of DNA-PK kinase activity and NHEJ ability (12,13). It has been demonstrated, however, that DNA-PK preferentially phosphorylates substrates before it autophosphorylates, suggesting that DNA-PK autophosphorylation may play a role in disassembly of the DNA repair machinery (14,15). Autophosphorylation at Thr2609 has also been shown to be required for DNA-PK-mediated double strand break repair, and phosphorylated DNA-PK co-localizes with H2A.X and 53BP1 at sites of DNA damage (16). Phosphorylation at Ser2056 occurs in response to double-stranded DNA breaks and ATM activation (17).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dopamine β-Hydroxylase (DBH) is an enzyme of the copper type II ascorbate-dependent mono-oxygenase family. This enzyme forms homotetramers composed of two noncovalently bound disulfide-linked dimers and is found as both membrane-associated and soluble forms (1-3). The soluble form is present in the lumen of secretory granules (4) and is released from cells by exocytosis (5). DBH converts dopamine to noradrenaline (6). Deficiency in this enzyme causes a rare disease characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased plasma dopamine levels (7). Orthostatic hypotension, the main symptom of DBH deficiency, can be alleviated by administration of dihydroxyphenylserine, a synthetic precursor of noradrenaline (8).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Mutations in Doublecortin cause Lissencephaly (smooth brain), a neuronal migration disorder characterized by epilepsy and mental retardation (1). Doublecortin is a microtubule associated protein that stabilizes and bundles microtubules. A conserved doublecortin domain mediates the interaction with microtubules, and interestingly most missense mutations cluster in this domain (2). Kinases JNK, CDK5 and PKA phosphorylate doublecortin. JNK phosphorylates Thr321, Thr331 and Ser334 while PKA phosphorylates Ser47 and CDK5 phosphorylates Ser297 (3-5). Phosphorylation of Ser297 lowers the affinity of doublecortin to microtubules. Furthermore, mutations of Ser297 result in migration defects (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Down-regulator of transcription 1 (DR1), also known as negative cofactor 2-β (NC2-β), forms a heterodimer with DR1 associated protein 1 (DRAP1)/NC2-α and acts as a negative regulator of RNA polymerase II and III (RNAPII and III) transcription (1-5). DR1 activity is thought to be important for modulating the switch between basal transcription activity and transcription activator driven transcription (2,6,7). DR1 interaction with TATA binding protein (TBP) blocks the association of general transcription factors TFIIA and TFIIB with TBP and disrupts the formation of the RNAPII transcription initiation complex (1,8,9). RNAPIII driven transcription is also inhibited by DR1 interaction with TBP. DR1 disrupts the interaction of TBP with the TFIIB related factor (BRF)/RNAPIII B-related factor, inhibiting transcription initiation by the RNAPIII machinery (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The tumor necrosis factor receptor family, which includes TNF-RI, Fas, DR3, DR4, DR5, and DR6, plays an important role in the regulation of apoptosis in various physiological systems (1,2). The receptors are activated by a family of cytokines that include TNF, FasL, and TRAIL. They are characterized by a highly conserved extracellular region containing cysteine-rich repeats and a conserved intracellular region of about 80 amino acids termed the death domain (DD). The DD is important for transducing the death signal by recruiting other DD containing adaptor proteins (FADD, TRADD, RIP) to the death-inducing signaling complex (DISC), resulting in activation of caspases.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Developmentally-regulated brain proteins (Drebrins) are cytoplasmic proteins that were originally identified in the brain as F-actin-binding proteins. There are two mammalian isoforms: adult type (A) and embryonic type (E). These isoforms are derived from a single gene through alternative RNA splicing mechanisms (1). Drebrin E has been observed to accumulate in the developmental stage of migrating neurons and in the growing cell processes of neurons. Drebrin A is found at the dendritic spines of mature cortical neurons where it plays a role in synaptic plasticity (2,3). Although drebrins are primarily found in neurons, they have also been found in skeletal muscle, heart, pancreas, and kidney. Research studies have shown that reduced expression of drebrin in the brain could be associated with Alzheimer’s Disease, Down Syndrome (4), and bipolar disorders (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Developmentally-regulated brain proteins (Drebrins) are cytoplasmic proteins that were originally identified in the brain as F-actin-binding proteins. There are two mammalian isoforms: adult type (A) and embryonic type (E). These isoforms are derived from a single gene through alternative RNA splicing mechanisms (1). Drebrin E has been observed to accumulate in the developmental stage of migrating neurons and in the growing cell processes of neurons. Drebrin A is found at the dendritic spines of mature cortical neurons where it plays a role in synaptic plasticity (2,3). Although drebrins are primarily found in neurons, they have also been found in skeletal muscle, heart, pancreas, and kidney. Research studies have shown that reduced expression of drebrin in the brain could be associated with Alzheimer’s Disease, Down Syndrome (4), and bipolar disorders (5).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster

Application Methods: Western Blotting

Background: Cell death in the fruit fly Drosophila melanogaster is regulated by many of the same stimuli as mammalian cell death (1). The Drosophila genome contains seven caspase genes; three encode initiator caspases and four encode effector caspases (reviewed in 2). drICE is a cysteine protease that cleaves baculovirus p35 and lamin DmO in vitro and acts downstream of rpr (3). drICE is proteolytically processed during apoptosis into active p21 and p12 subunits. Comparison of the in vivo activity between drICE and Dcp-1 has shown that drICE is a more effective inducer of apoptosis than Dcp-1, which plays a role in determining the rate of cell death (4).