Microsize antibodies for $99 | Learn More >>

Product listing: MAPKAPK-3 Antibody, UniProt ID Q16644 #3043 to MEIS1/2 Antibody, UniProt ID O00470 #12744

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: MAPKAPK-3 has a single potential SH3-binding site in the proline-rich amino terminus, a putative ATP-binding site, 2 MAP kinase phosphorylation site motifs, and a putative nuclear localization signal. It shares 72% nucleotide and 75% amino acid identity with MAPKAPK-2 (1). MAPKAPK-3 has been shown to be activated by growth inducers and stress stimulation of cells. In vitro studies have demonstrated that Erk, p38 MAP kinase, and Jun amino-terminal kinase are able to phosphorylate and activate MAPKAPK-3, which suggested a role for this kinase as an integrative element of signaling in both mitogen and stress responses (2). MAPKAPK-3 was reported to interact with, phosphorylate, and repress the activity of E47, which is a basic helix-loop-helix transcription factor involved in the regulation of tissue-specific gene expression and cell differentiation (3). MAPKAPK-3 may also support luteal maturation through the phosphorylation and activation of the nuclear transcription factor CREB (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Microtubule associated proteins regulate the stability of microtubules and control processes such as cell polarity/differentiation, neurite outgrowth, cell division and organelle trafficking (1). The MARK (MAP/microtubule affinity-regulating kinases) family (MARK1-4) of serine/threonine kinases was identified based on their ability to phosphorylate microtubule-associated proteins (MAPs) including tau, MAP2 and MAP4 (2-6). MARK proteins phosphorylate MAPs within their microtubule binding domains, causing dissociation of MAPs from microtubules and increased microtubule dynamics (2-4). In the case of tau, phosphorylation has been hypothesized to contribute to the formation of neurofibrillary tangles observed in Alzheimer's disease. Overexpression of MARK leads to hyperphosphorylation of MAPs, morphological changes and cell death (4). The tumor suppressor kinase LKB1 phosphorylates MARK and the closely related AMP-kinases within their T-loops, leading to increased activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Microtubule associated proteins regulate the stability of microtubules and control processes such as cell polarity/differentiation, neurite outgrowth, cell division and organelle trafficking (1). The MARK (MAP/microtubule affinity-regulating kinases) family (MARK1-4) of serine/threonine kinases was identified based on their ability to phosphorylate microtubule-associated proteins (MAPs) including tau, MAP2 and MAP4 (2-6). MARK proteins phosphorylate MAPs within their microtubule binding domains, causing dissociation of MAPs from microtubules and increased microtubule dynamics (2-4). In the case of tau, phosphorylation has been hypothesized to contribute to the formation of neurofibrillary tangles observed in Alzheimer's disease. Overexpression of MARK leads to hyperphosphorylation of MAPs, morphological changes and cell death (4). The tumor suppressor kinase LKB1 phosphorylates MARK and the closely related AMP-kinases within their T-loops, leading to increased activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Microtubule associated proteins regulate the stability of microtubules and control processes such as cell polarity/differentiation, neurite outgrowth, cell division and organelle trafficking (1). The MARK (MAP/microtubule affinity-regulating kinases) family (MARK1-4) of serine/threonine kinases was identified based on their ability to phosphorylate microtubule-associated proteins (MAPs) including tau, MAP2 and MAP4 (2-6). MARK proteins phosphorylate MAPs within their microtubule binding domains, causing dissociation of MAPs from microtubules and increased microtubule dynamics (2-4). In the case of tau, phosphorylation has been hypothesized to contribute to the formation of neurofibrillary tangles observed in Alzheimer's disease. Overexpression of MARK leads to hyperphosphorylation of MAPs, morphological changes and cell death (4). The tumor suppressor kinase LKB1 phosphorylates MARK and the closely related AMP-kinases within their T-loops, leading to increased activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Microtubule associated proteins regulate the stability of microtubules and control processes such as cell polarity/differentiation, neurite outgrowth, cell division and organelle trafficking (1). The MARK (MAP/microtubule affinity-regulating kinases) family (MARK1-4) of serine/threonine kinases was identified based on their ability to phosphorylate microtubule-associated proteins (MAPs) including tau, MAP2 and MAP4 (2-6). MARK proteins phosphorylate MAPs within their microtubule binding domains, causing dissociation of MAPs from microtubules and increased microtubule dynamics (2-4). In the case of tau, phosphorylation has been hypothesized to contribute to the formation of neurofibrillary tangles observed in Alzheimer's disease. Overexpression of MARK leads to hyperphosphorylation of MAPs, morphological changes and cell death (4). The tumor suppressor kinase LKB1 phosphorylates MARK and the closely related AMP-kinases within their T-loops, leading to increased activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Maspin (SERPINB5) was discovered as a mammary tumor suppressor that is expressed in normal mammary epithelium but lost in most breast cancer cell lines (1). While maspin is related to the serpin family of serine protease inhibitors, it may not function as a protease inhibitor (2). It plays an essential role in embryonic development through critical roles in cell adhesion (3). While the precise mechanism of maspin signaling is unclear (4), the tumor suppressing activity of maspin has been attributed to its ability to inhibit cell invasion/metastasis (5,6) and angiogenesis (7), while promoting apoptosis (8). Nuclear translocation of active IKKα has been shown to repress maspin transcription and promote prostate cancer metastasis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Maspin (SERPINB5) was discovered as a mammary tumor suppressor that is expressed in normal mammary epithelium but lost in most breast cancer cell lines (1). While maspin is related to the serpin family of serine protease inhibitors, it may not function as a protease inhibitor (2). It plays an essential role in embryonic development through critical roles in cell adhesion (3). While the precise mechanism of maspin signaling is unclear (4), the tumor suppressing activity of maspin has been attributed to its ability to inhibit cell invasion/metastasis (5,6) and angiogenesis (7), while promoting apoptosis (8). Nuclear translocation of active IKKα has been shown to repress maspin transcription and promote prostate cancer metastasis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The mitochondrial antiviral signaling protein (MAVS, VISA) contributes to innate immunity by triggering IRF-3 and NF-κB activation in response to viral infection, leading to the production of IFN-β (1). The MAVS protein contains an N-terminal CARD domain and a C-terminal mitochondrial transmembrane domain. The MAVS adaptor protein plays a critical and specific role in viral defenses (2). MAVS acts downstream of the RIG-I RNA helicase and viral RNA sensor, leading to the recruitment of IKKε, TRIF and TRAF6 (3,4). Some viruses have evolved strategies to circumvent these innate defenses by using proteases that cleave MAVS to prevent its mitochondrial localization (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The mitochondrial antiviral signaling protein (MAVS, VISA) contributes to innate immunity by triggering IRF-3 and NF-κB activation in response to viral infection, leading to the production of IFN-β (1). The MAVS protein contains an N-terminal CARD domain and a C-terminal mitochondrial transmembrane domain. The MAVS adaptor protein plays a critical and specific role in viral defenses (2). MAVS acts downstream of the RIG-I RNA helicase and viral RNA sensor, leading to the recruitment of IKKε, TRIF and TRAF6 (3,4). Some viruses have evolved strategies to circumvent these innate defenses by using proteases that cleave MAVS to prevent its mitochondrial localization (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Myc/Max/Mad network function as transcriptional regulators with roles in various aspects of cell behavior including proliferation, differentiation and apoptosis (1). These proteins share a common basic-helix-loop-helix leucine zipper (bHLH-ZIP) motif required for dimerization and DNA-binding. Max was originally discovered based on its ability to associate with c-Myc and found to be required for the ability of Myc to bind DNA and activate transcription (2). Subsequently, Max has been viewed as a central component of the transcriptional network, forming homodimers as well as heterodimers with other members of the Myc and Mad families (1). The association between Max and either Myc or Mad can have opposing effects on transcriptional regulation and cell behavior (1). The Mad family consists of four related proteins; Mad1, Mad2 (Mxi1), Mad3 and Mad4, and the more distantly related members of the bHLH-ZIP family, Mnt and Mga. Like Myc, the Mad proteins are tightly regulated with short half-lives. In general, Mad family members interfere with Myc-mediated processes such as proliferation, transformation and prevention of apoptosis by inhibiting transcription (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Methyl-CpG-binding protein 2 (MeCP2) is the founding member of a family of methyl-CpG-binding domain (MBD) proteins that also includes MBD1, MBD2, MBD3, MBD4, MBD5 and MBD6 (1-3). Apart from MBD3, these proteins bind methylated cytosine residues in the context of the di-nucleotide 5´-CG-3´ to establish and maintain regions of transcriptionally inactive chromatin by recruiting a variety of co-repressor proteins (2). MeCP2 recruits histone deacetylases HDAC1 and HDAC2, and the DNA methyltransferase DNMT1 (4-6). MBD1 couples transcriptional silencing to DNA replication and interacts with the histone methyltransferases ESET and SUV39H1 (7,8). MBD2 and MBD3 co-purify as part of the NuRD (nucleosome remodeling and histone de-acetylation) co-repressor complex, which contains the chromatin remodeling ATPase Mi-2, HDAC1 and HDAC2 (9,10). MBD5 and MBD6 have recently been identified and little is known regarding their protein interactions. MBD proteins are associated with cancer and other diseases; MBD4 is best characterized for its role in DNA repair and MBD2 has been linked to intestinal cancer (11,12). Mutations in the MeCP2 gene cause the neurologic developmental disorder Rett Syndrome (13). MeCP2 protein levels are high in neurons, where it plays a critical role in multiple synaptic processes (14). In response to various physiological stimuli, MeCP2 is phosphorylated on Ser421 and regulates the expression of genes controlling dendritic patterning and spine morphogenesis (14). Disruption of this process in individuals with altered MeCP2 may cause the pathological changes seen in Rett Syndrome.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Membrane-bound transcription factor protease site 2 (MBTPS2), also known as site-2 protease (S2P), is a zinc metalloprotease in the Golgi membrane (1,2,3). It regulates cholesterol metabolism (1,2) and unfolded protein response (UPR) (3,4). When cells are deprived of cholesterol, sterol regulatory element-binding proteins (SREBPs) move from the endoplasmic reticulum (ER) to the Golgi apparatus and are cleaved by site-1 protease (S1P) (5,6) and site-2 protease (1,6) sequentially to release the active amino-terminal domains. These amino-terminal domains of SREBPs then translocate into the nucleus to induce expression of genes for cholesterol biosynthesis. During UPR, activating transcription factor 6 (ATF6) transports from ER to Golgi apparatus and is cleaved by S1P and S2P to release a cytosolic fragment. This cytosolic fragment relocates to the nucleus and activates the UPR gene expression (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Melanoma cell adhesion molecule (MCAM, MUC18, CD146) is an immunoglobulin superfamily member originally described as a cell surface adhesion protein and marker of the progression and metastasis of melanoma (1,2). Expression of MCAM protein is seen in vascular endothelial cells, activated T lymphocytes, smooth muscle, and bone marrow stromal cells. Research studies demonstrate increased MCAM expression in endothelial cells from angiogenesis-related disorders, including inflammatory bowel disease, Crohn’s disease, rheumatoid arthritis, tumors, and chronic renal failure (3). MCAM-expressing human mesenchymal stromal cells (hMSC) in the hematopoietic microenvironment are responsible for maintaining the self-renewal of hematopoietic stem and progenitor cells (HSPC) through direct contact between hMSC and those cells (2). Related studies suggest that activation of the Notch signaling pathway may also, in part, play a role in HSPC maintenance (4). Additional research indicates that MCAM may play a role in multiple sclerosis, an autoimmune inflammatory disease that affects central nervous system neurons. Endothelial MCAM within the blood-brain barrier act as adhesion receptors that permit lymphocytes to transmigrate across the barrier and produce the inflammatory lesions that characterize the disorder (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The MCF2/Dbl proto-oncogene product is the founding member of the Dbl family of Rho guanine nucleotide exchange factors (GEFs) that are characterized by their Dbl homology (DH) domain (1). GEFs stimulate the formation of the active, GTP-bound form of small GTPases such as Rho, Rac and Cdc42, signaling to various downstream molecules and regulating diverse cell functions. While the overexpressed, full-length Dbl gene has transforming activity (2), mutations resulting in truncated Dbl cause the protein to become highly oncogenic. This truncated form of Dbl, which lacks the amino-terminal 497 amino acids, has constitutive GEF activity (3) and is more stable than the full-length variant (4), allowing for increased signaling to downstream effector molecules.Dbl interacts with ezrin, a member of the ezrin/radixin/moesin (ERM) family of proteins that links the plasma membrane to the actin cytoskeleton. Dbl interacts with ezrin in lipid microdomains, which leads to Cdc42 activation and the regulation of processes such as filopodia formation and cell polarity (5,6). Dbl localization and biological activities are regulated in part by phosphatidylinositol 3-kinase (PI3K) (7). Dbl is also involved in cell survival and inhibits apoptosis through induction of Akt phosphorylation at Thr308 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mcl-1 is an anti-apoptotic member of the Bcl-2 family originally isolated from the ML-1 human myeloid leukemia cell line during phorbol ester-induced differentiation along the monocyte/macrophage pathway (1). Similar to other Bcl-2 family members, Mcl-1 localizes to the mitochondria (2), interacts with and antagonizes pro-apoptotic Bcl-2 family members (3), and inhibits apoptosis induced by a number of cytotoxic stimuli (4). Mcl-1 differs from its other family members in its regulation at both the transcriptional and post-translational level. First, Mcl-1 has an extended amino-terminal PEST region, which is responsible for its relatively short half-life (1,2). Second, unlike other family members, Mcl-1 is rapidly transcribed via a PI3K/Akt dependent pathway, resulting in its increased expression during myeloid differentiation and cytokine stimulation (1,5-7). Mcl-1 is phosphorylated in response to treatment with phorbol ester, microtubule-damaging agents, oxidative stress, and cytokine withdrawal (8-11). Phosphorylation at Thr163, the conserved MAP kinase/ERK site located within the PEST region, slows Mcl-1 protein turnover (10) but may prime the GSK-3 mediated phosphorylation at Ser159 that leads to Mcl-1 destabilization (11). Mcl-1 deficiency in mice results in peri-implantation lethality (12). In addition, conditional disruption of the corresponding mcl-1 gene shows that Mcl-1 plays an important role in early lymphoid development and in the maintenance of mature lymphocytes (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mitochondrial Calcium Uniporter Regulator 1 (MCUR1) is a mitochondrial inner membrane protein involved in the uptake of calcium. This multi-pass protein contains two transmembrane domains with both amino- and carboxy-termini projecting into the same mitochondrial intermembrane space (1). Research studies indicate that reduction in MCUR1 activity results in decreased mitochondrial Ca2+ uptake, while overexpression of MCUR1 results in increased mitochondrial calcium levels (1). MCUR1 protein directly interacts with mitochondrial calcium uniporter (MCU) and plays an essential role in the regulation of calcium uptake and maintenance of mitochondrial calcium homeostasis (1). Regulation of MCU by MCUR1 may be critical for a variety of cellular functions, including signal transduction, bioenergetics, and cell death and survival (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Malate dehydrogenase (MDH) is a key enzyme in the tricarboxylic acid cycle and malate/aspartate shuttle (1,2). MDH is widely expressed in organisms from most bacteria to all eukaryotes (2). The cytoplasmic MDH isoenzyme (cMDH or MDH1) primarily reduces oxaloacetate to malate in the malate/aspartate shuttle (1-3). The major function of the mitochondrial MDH isoenzyme (mMDH or MDH2) is to oxidize malate to oxaloacetate in the tricarboxylic acid cycle (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The mediator complex consists of about 25-30 proteins and is thought to facilitate transcription activation by acting as a molecular bridge between the RNA polymerase II (RNAPII) machinery and transcription factors (1). Mediator is recruited to target genes by transcription factors and plays an essential role in the recruitment and stabilization of the RNAPII transcription complex at promoters, as well as the activation of transcription post RNAPII recruitment (1-5). The mediator complex also plays an important role in creating ‘chromatin loops’ that occur as a result of interactions between the transcription factor bound at distal enhancers and RNAPII bound at the proximal promoter, and works to sustain proper chromatin architecture during active transcription (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The mediator complex consists of about 25-30 proteins and is thought to facilitate transcription activation by acting as a molecular bridge between the RNA polymerase II (RNAPII) machinery and transcription factors (1). Mediator is recruited to target genes by transcription factors and plays an essential role in the recruitment and stabilization of the RNAPII transcription complex at promoters, as well as the activation of transcription post RNAPII recruitment (1-5). The mediator complex also plays an important role in creating ‘chromatin loops’ that occur as a result of interactions between the transcription factor bound at distal enhancers and RNAPII bound at the proximal promoter, and works to sustain proper chromatin architecture during active transcription (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The mediator complex consists of about 25-30 proteins and is thought to facilitate transcription activation by acting as a molecular bridge between the RNA polymerase II (RNAPII) machinery and transcription factors (1). Mediator is recruited to target genes by transcription factors and plays an essential role in the recruitment and stabilization of the RNAPII transcription complex at promoters, as well as the activation of transcription post RNAPII recruitment (1-5). The mediator complex also plays an important role in creating ‘chromatin loops’ that occur as a result of interactions between the transcription factor bound at distal enhancers and RNAPII bound at the proximal promoter, and works to sustain proper chromatin architecture during active transcription (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: MEF2A is a member of the MEF2 (myocyte enhancer factor 2) family of transcription factors. In mammals, four MEF2A-related genes (MEF2A, MEF2B, MEF2C and MEF2D) encode proteins which exhibit significant amino acid sequence similarity within their DNA binding domains and to a lesser extent throughout the remaining proteins (1). The MEF2 family members were originally described as muscle-specific DNA binding proteins that recognize MEF2 motifs found within the promoters of many muscle-specific genes (2,3). Phosphorylation of MEF2A at Thr312 and Thr319 within the transcription activation domain by p38 MAP kinase enhances MEF2A-MEF2D heterodimer-dependent gene expression (4). On the other hand, apoptotic stimuli (e.g. neurotoxic insult) result in CDK5-dependent phosphorylation of MEF2A at Ser408 within the activation domain, inhibiting MEF2A pro-survival function (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Myocyte enhancer factor 2D (MEF2D) is a member of the MEF2 family of transcription factors. In mammals, there are four MEF2C-related genes (MEF2A, MEF2B, MEF2C, and MEF2D) that encode proteins that exhibit significant amino acid sequence similarity within their DNA binding domains and, to a lesser extent, throughout the rest of the proteins (1). MEF2 proteins contain a highly conserved N-terminal MADS-box domain, an MEF2 domain, and a more highly variable C-terminal transactivation domain (2). The MEF2 family members were originally described as muscle-specific DNA binding proteins that recognize MEF2 motifs found within the promoters of many muscle-specific genes (3,4); however, more recently they have been found to play critical roles in other physiological processes, such as heart formation and nervous system development (5,6). As such, alterations in MEF2 protein levels can result in developmental and neurological disorders, as well as other diseases such as liver fibrosis and many types of cancer (7). Specifically, MEF2D expression in hepatocellular carcinoma (HCC) is associated with higher levels of proliferation and poor prognosis (8). MEF2D is also overexpressed in clinical colorectal cancer tissues, where its high expression correlates with metastatic process. Functional investigations show that MEF2D promotes cancer cell invasion and epithelial-mesenchymal transition (EMT) and that it is essential for certain microenvironment signals to induce EMT and metastasis in vivo (9). Alternatively, MEF2D may function as a tumor suppressor in lipo- and leiomyosarcoma, as decreased MEF2D activity results in increased cell proliferation and anchorage-independent growth (10). MEF2D may also act as a tumor suppressor in rhabdomyosarcoma, as loss of MEF2D expression results in inhibition of differentiation, increased cell proliferation, and increased anchorage-independent growth (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Hox, Pbx, and Meis are families of transcription factors that bind DNA via their homeodomains. Members from each family form heterodimers to give rise to complexes with unique DNA binding specificities. Homeodomain containing proteins are frequently involved in normal developmental processes, but can also be associated with tumorigenic states (1). MEIS proteins belong to the TALE (Three Amino Acid Loop Extension) homeobox containing transcription factor family. MEIS1 has been associated with leukemogenesis and neuroblastoma (2,3) while MEIS2 is known to play an important role in the transcriptional program that is induced in normal pancreatic development (4) and cardiogenesis (5).