Microsize antibodies for $99 | Learn More >>

Product listing: PLK1 Antibody, UniProt ID P53350 #4535 to PSMA2 Antibody, UniProt ID P25787 #2455

$260
200 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: At least four distinct polo-like kinases exist in mammalian cells: PLK1, PLK2, PLK3, and PLK4/SAK (1). PLK1 apparently plays many roles during mitosis, particularly in regulating mitotic entry and exit. The mitosis promoting factor (MPF), cdc2/cyclin B1, is activated by dephosphorylation of cdc2 (Thr14/Tyr15) by cdc25C. PLK1 phosphorylates cdc25C at Ser198 and cyclin B1 at Ser133 causing translocation of these proteins from the cytoplasm to the nucleus (2-5). PLK1 phosphorylation of Myt1 at Ser426 and Thr495 has been proposed to inactivate Myt1, one of the kinases known to phosphorylate cdc2 at Thr14/Tyr15 (6). Polo-like kinases also phosphorylate the cohesin subunit SCC1, causing cohesin displacement from chromosome arms that allow for proper cohesin localization to centromeres (7). Mitotic exit requires activation of the anaphase promoting complex (APC) (8), a ubiquitin ligase responsible for removal of cohesin at centromeres, and degradation of securin, cyclin A, cyclin B1, Aurora A, and cdc20 (9). PLK1 phosphorylation of the APC subunits Apc1, cdc16, and cdc27 has been demonstrated in vitro and has been proposed as a mechanism by which mitotic exit is regulated (10,11).Substitution of Thr210 with Asp has been reported to elevate PLK1 kinase activity and delay/arrest cells in mitosis, while a Ser137Asp substitution leads to S-phase arrest (12). In addition, while DNA damage has been found to inhibit PLK1 kinase activity, the Thr210Asp mutant is resistant to this inhibition (13). PLK1 has been reported to be phosphorylated in vivo at Ser137 and Thr210 in mitosis; DNA damage prevents phosphorylation at these sites (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Myelin proteolipid protein (PLP1) corresponds to the majority of myelin proteins in the CNS, providing support to axons and modulating the axonal growth (1). DM20 is the result of the alternative splicing of the plp1 gene, which is linked to oligodendrocyte differentiation and survival. The imbalance of PLP1/DM20, is linked to Pelizaeus-Merzbacher disese (2,3), including mitochonmdrial damage (4). In addition, PLP1, but not DM20, can enter the mitochondria and participate in the metabolism of cells (5, 6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PLXND1 (PlexinD1) is a type I transmembrane receptor for semaphorin (SEMA) family signaling molecules (1). PLXND1 has an extracellular SEMA binding domain, and a cytoplasmic tail containing RasGAP motifs and a RhoGTPase-binding domain. Upon ligand binding, PLXND1 undergoes conformational change and acquires GAP activity that inactivates downstream Rac/Ras signaling, leading to focal adhesion destabilization (2). The PLXND1 signaling pathway plays important roles in neuronal synapse formation, vascular branching, and thymocyte migration (2-4). Increased expression of PLXND1 is positively correlated with tumor stages in multiple cancer types (6). This is supported by gene knockdown experiments that suggest that SEMA/PLXND1 signaling may contribute metastatic progression (7-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein phosphatase-1 nuclear targeting subunit (PNUTS) is one of the key regulators of protein phosphatase 1 (PP1) in the nucleus (1). Via interaction with PP1, PNUTS plays an essential role in multiple cellular processes, including chromatin decondensation (2), DNA damage response (3), and cardiomyocyte apoptosis (4). Notably, PNUTS also regulates the activity of two key tumor suppressors, Rb and p53, through inhibition of PP1 mediated dephosphorylation (5-7). Research studies indicate that PNUTS also sequesters PTEN in the nucleus through direct interaction and inhibits its tumor suppressor function (8). PNUTS is ubiquitously expressed and elevated PNUTS expression is observed in various cancers such as esophageal carcinoma, squamous cell carcinoma, and prostate cancer (1,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Reptin/RuvBL2 and Pontin/RuvBL1 are closely related members of the AAA+ (ATPase associated with diverse cellular activities) superfamily of proteins, and are putatively homologous to bacterial RuvB proteins that drive branch migration of Holliday junctions (1). Reptin and Pontin function together as essential components of chromatin remodeling and modification complexes, such as INO80, TIP60, SRCAP, and Uri1, which play key roles in regulating gene transcription (1,2). In their capacity as essential transcriptional co-regulators, Reptin and Pontin have both been implicated in oncogenic transformations, including those driven by c-Myc, β-catenin, and E1A (2-7).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Type 1 protein phosphatase (PP1), a serine/threonine phosphatase, is highly conserved in eukaryotic cells. Four isoforms of PP1 have been characterized: PP1α, PP1δ, PP1γ1 and PP1γ2 (1). Involvement in cell cycle regulation is one of the biological functions of PP1 (1). It has been illustrated that PP1 dephosphorylates Rb and cdc25 during mitosis (2,3). A cell cycle-dependent phosphorylation at Thr320 of PP1α by cdc2 kinase inhibits PP1α activity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Protein phosphatase 5 (PP5) is a member of the serine/threonine phosphatase family that also includes PP1, PP2A and PP2B. PP5 uniquely contains an amino-terminal regulatory domain with three tetratricopeptide repeat (TPR) motifs and a carboxy-terminal catalytic domain (1-3). Through the TPR domain, PP5 interacts with a number of proteins and has been reported to be involved in diverse signal transduction pathways, including glucocorticoid receptor signaling, p53-mediated growth arrest, oxidative stress-mediated apoptosis and the response to ionizing radiation-induced DNA damage (4-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: PPIG belongs to a highly conserved class of cyclophilins that function as peptidyl-prolyl-isomerases (PPIases) to catalyze the conversion of cis-proline to trans-proline in a polypeptide chain (1-4). PPIG contains an amino-terminal cyclophilin domain followed by Nopp140 repeats that are involved in its function as a nuclear chaperone (5). The carboxy-terminal of PPIG contains a SR (arginine-serine dipeptide repeat) domain (3,4) that is involved in pre-mRNA splicing and processing (6). PPIG interacts with the carboxy-terminal domain of RNA polymerase II as well as several other SR family splicing factors. These interactions lead to changes in localization and conformation and suggest a regulatory role in transcription and pre-mRNA splicing in the elongating RNA polymerase complex (7,8). PPIG is found in the nuclear matrix and nuclear speckles and is involved in the regulation of gene expression. PPIG shows a predominantly diffuse cytoplasmic distribution at the onset of mitosis, and in late telophase the isomerase is recruited to the newly formed nuclei (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cancer/testis antigens (CTAs) are a family of more than 100 proteins whose normal expression is largely restricted to immune privileged germ cells of the testis, ovary, and trophoblast cells of the placenta. Although most normal somatic tissues are void of CTA expression, due to epigenetic silencing of gene expression, their expression is upregulated in a wide variety of human solid and liquid tumors (1,2). As such, CTAs have garnered much attention as attractive targets for a variety of immunotherapy-based approaches to selectively attack tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Many growth factors and hormones induce the phosphoinositide 3-kinase signaling pathway, which results in the activation of downstream effector proteins such as the serine/threonine kinase Akt (1,2). One known Akt substrate is a 40 kDa, proline-rich protein (PRAS40) that binds to 14-3-3 proteins (2). PRAS40 also binds mTOR to transduce Akt signals to the mTOR complex. Inhibition of mTOR signaling stimulates PRAS40 binding to mTOR, which in turn inhibits mTOR activity (3). PRAS40 interacts with raptor in mTOR complex 1 (mTORC1) in insulin-deprived cells and inhibits the activation of the mTORC1 pathway mediated by the cell cycle protein Rheb. Phosphorylation of PRAS40 by Akt at Thr246 relieves PRAS40 inhibition of mTORC1 (4). mTORC1 in turn phosphorylates PRAS40 at Ser183 (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein Regulator of Cytokinesis 1 (PRC1) is a member of the MAP65/ASE1 family of nonmotor microtubule-associated proteins, first described in budding yeast (1,2). PRC1 is a substrate of CDK1, which maintains PRC1 in an inactive, monomeric state (2). Cell-cycle dependent degradation of CDK1 leads to dephosphorylation of PRC1 and subsequent KIF4-mediated translocation to the plus ends of microtubules, where it promotes microtubule bundling by cross-linking antiparallel microtubules (3-5). The microtubule bundling functions of PRC1 play a critical role in maintaining structural integritry of the spindle midzone during cytokinesis (3,6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Peroxiredoxin 2 (PRDX2, PRXII, NKEFB) is a ubiquitously expressed thioredoxin peroxidase. The enzyme catalyzes the reduction of hydrogen peroxide and organic hydroperoxides via the thioredoxin system (1). An antioxidant, PRDX2 neutralizes endogenous reactive oxygen species (ROS) and regulates cytokine-induced peroxide levels for normal cell function (2). Research studies have shown that PRDX2 plays important roles in inflammation, cancer, and natural killer (NK) cell activation (3). During cancer progression, PRDX2 is upregulated and protects cancer cells from oxidative stress-induced apoptosis (4, 5). In inflammatory diseases such as infection, myocardial infarction, and ischemia, PRDX2 not only protects (host) cells from oxidative stress-induced death, but is also released into extracellular space to trigger local inflammation and to activate NK cells for innate immune response (6, 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Peroxiredoxin 6 (Prdx6) belongs to an antioxidant enzyme family of non-seleno peroxidases (prdx). It is a unique member of the Prdx family exhibiting both glutathione peroxidase and phospholipase A2 activities (1,2). Prdx6 regulates phospholipid turnover as well as protects cells against oxidative injury. Prdx6 is expressed in all major organs with a particularly high level in lung where it regulates lung surfactant phospholipid synthesis and turnover (3-5). Studies show Prdx6 is aberrantly expressed in various cancers and promotes cancer cell metastasis and invasion (6,7). Elevated expression of Prdx6 and other prdx family members contributes to drug resistance in cancer cells (8,9). Prdx6 is also expressed in neutrophils, where it regulates the function of these cells and activates NADPH oxidase (Nox2) ( 10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Presenilin 1 and presenilin 2 are transmembrane proteins belonging to the presenilin family. Mutation of presenilin genes has been linked to early onset of Alzheimer disease, probably due to presenilin's associated γ-secretase activity for amyloid-β protein processing (1,2). Endogenous presenilin mainly exists in a heterodimeric complex formed from the endoproteolytically processed amino-terminal (34 kDa) and carboxy-terminal (~20, 22, 23 kDa) fragments (CTF) (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Presenilin 1 and presenilin 2 are transmembrane proteins belonging to the presenilin family. Mutation of presenilin genes has been linked to early onset of Alzheimer disease, probably due to presenilin's associated γ-secretase activity for amyloid-β protein processing (1,2). Endogenous presenilin mainly exists in a heterodimeric complex formed from the endoproteolytically processed amino-terminal (34 kDa) and carboxy-terminal (~20, 22, 23 kDa) fragments (CTF) (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The protein kinase C-related kinases (PRKs) are a subfamily of Ser/Thr-specific kinases with a catalytic domain highly homologous to the PKC family (1-3). They are effectors of Rho family GTPases (4-6) and are activated by fatty acids and phospholipids in vitro (7,8). Activation in vitro and in vivo involves the activation loop phosphorylation of PRK1 (Thr774)/PRK2 (Thr816) by PDK1 (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Protein arginine N-methyltransferase 1 (PRMT1) is a member of the protein arginine N-methyltransferase (PRMT) family of proteins that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (1). Though all PRMT proteins catalyze the formation of mono-methyl arginine, Type I PRMTs (PRMT1, 3, 4, and 6) add an additional methyl group to produce an asymmetric di-methyl arginine while Type II PRMTs (PRMT 5 and 7) produce symmetric di-methyl arginine (1). Mono-methyl arginine, but not di-methyl arginine, can be converted to citrulline through deimination catalyzed by enzymes such as PADI4 (2). Most PRMTs, including PRMT1, methylate arginine residues found within glycine-arginine rich (GAR) protein domains, such as RGG, RG, and RXR repeats (1). However, PRMT4/CARM1 and PRMT5 methylate arginine residues within PGM (proline-, glycine-, methionine-rich) motifs (3). PRMT1 methylates Arg3 of histone H4 and cooperates synergistically with p300/CBP to enhance transcriptional activation by nuclear receptor proteins (4-6). In addition, PRMT1 methylates many non-histone proteins, including the orphan nuclear receptor HNF4 (6), components of the heterogeneous nuclear ribonucleoprotein (hnRNP) particle (7), the RNA binding protein Sam68 (8), interleukin enhancer-binding factor 3 (ILF3) (9) and interferon-α and β receptors (10). These interactions suggest additional functions in transcriptional regulation, mRNA processing and signal transduction. Alternative mRNA splicing produces three enzymatically active PRMT1 isoforms that differ in their amino-terminal regions (11). PRMT1 is localized to the nucleus or cytoplasm, depending on cell type (12,13), and appears in many distinct protein complexes. ILF3, TIS21 and the leukemia-associated BTG1 proteins bind PRMT1 to regulate its methyltransferase activity (9,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein arginine N-methyltransferase 1 (PRMT1) is a member of the protein arginine N-methyltransferase (PRMT) family of proteins that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (1). Though all PRMT proteins catalyze the formation of mono-methyl arginine, Type I PRMTs (PRMT1, 3, 4, and 6) add an additional methyl group to produce an asymmetric di-methyl arginine while Type II PRMTs (PRMT 5 and 7) produce symmetric di-methyl arginine (1). Mono-methyl arginine, but not di-methyl arginine, can be converted to citrulline through deimination catalyzed by enzymes such as PADI4 (2). Most PRMTs, including PRMT1, methylate arginine residues found within glycine-arginine rich (GAR) protein domains, such as RGG, RG, and RXR repeats (1). However, PRMT4/CARM1 and PRMT5 methylate arginine residues within PGM (proline-, glycine-, methionine-rich) motifs (3). PRMT1 methylates Arg3 of histone H4 and cooperates synergistically with p300/CBP to enhance transcriptional activation by nuclear receptor proteins (4-6). In addition, PRMT1 methylates many non-histone proteins, including the orphan nuclear receptor HNF4 (6), components of the heterogeneous nuclear ribonucleoprotein (hnRNP) particle (7), the RNA binding protein Sam68 (8), interleukin enhancer-binding factor 3 (ILF3) (9) and interferon-α and β receptors (10). These interactions suggest additional functions in transcriptional regulation, mRNA processing and signal transduction. Alternative mRNA splicing produces three enzymatically active PRMT1 isoforms that differ in their amino-terminal regions (11). PRMT1 is localized to the nucleus or cytoplasm, depending on cell type (12,13), and appears in many distinct protein complexes. ILF3, TIS21 and the leukemia-associated BTG1 proteins bind PRMT1 to regulate its methyltransferase activity (9,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein arginine N-methyltransferase 4 (PRMT4), also known as coactivator-associated arginine methyltransferase 1 (CARM1), is a member of the protein arginine N-methyltransferase (PRMT) family of proteins, which catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (1). There are two types of PRMT proteins. While both types catalyze the formation of mono-methyl arginine, type I PRMTs (PRMT1, 3, 4 and 6) add an additional methyl group to produce asymmetric di-methyl arginine and type II PRMTs (PRMT 5 and 7) produce symmetric di-methyl arginine (1). Mono-methyl arginine, but not di-methyl arginine, can be converted to citrulline through deimination performed by enzymes such as PADI4 (2). Most of the PRMTs methylate arginine residues found within glycine-arginine rich (GAR) domains of proteins, such as RGG, RG and RXR repeats (1). However, PRMT4/CARM1 and PRMT5 instead methylate arginine residues within PGM (proline-, glycine-, methionine-rich) motifs (3). PRMT4 methylates Arg2, 17 and 26 of histone H3 and cooperates synergistically with p300/CBP and p160 coactivators to enhance transcriptional activation by nuclear receptor proteins (4). In addition, PRMT4 methylates many non-histone proteins, including transcriptional coactivators (p300/CBP, SRC-3) (5,6,7,8), splicing factors (SmB, CA150, SAP49, UIC) (3), RNA binding proteins (PABP1, Sam68, HuD, HuR) (9,10,11), and thymocyte cyclic AMP-regulated phosphoprotein (TARPP) (12), suggesting additional functions in transcriptional regulation, mRNA processing and thymocyte maturation. Methylation of the splicing factor CA150 by PRMT4 facilitates an interaction with the Tudor domain of SMN, suggesting a role for PRMT4 in spinal muscular atrophy (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Human Skb1Hs methyltransferase (also called JBP1), a homologue of yeast protein Skb1 and Hsl7p (1,2), is composed of 637 amino acid residues and contains motifs conserved among protein methyltransferases. It methylates histones and MBP in vitro (2). Yeast Hsl7p is involved in regulation of cell cycle progression through G2 by negatively regulating Swe1p, a protein tyrosine kinase that phosphorylates and inhibits Cdc28p (3). An Hsl7p homologue, Skb1, was identified in fission yeast by virtue of its yeast two-hybrid interaction with Shk1p, a p21 (cdc42p/Rac) activated kinase (PAK) (4). Both proteins belong to the protein methyltransferase superfamily (5). Interestingly, human Skb1Hs methyltransferase was shown to interact with Jak kinases. This suggests the possibility that the Skb1Hs methyltransferase could link Jak to a PAK signaling pathway in mammalian cells.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Transforming growth factor alpha (TGF-alpha) is a member of the epidermal growth factor (EGF) family, sharing the same receptor, EGFR, and regulating cell proliferation, survival, and differention (1). Members of the family share an EGF-like domain of 45-60 amino acids characterized by the conservation of six regularly spaced cysteins, forming three disulfide bonds that function as their receptor binding domain. TGF-alpha was initially discovered in the media of retrovirally transformed fibroblasts, and it name comes from its ability to induce transformation in cultured fibroblasts (2). This transforming activity was later shown to require TGF-beta, which potentiates the activity of TGF-alpha through a separate receptor (3). Soluble TGF-alpha is released from its membrane-bound precusor, pro-TGF-alpha, following protolytic cleavage, but the membrane bound precursor is still able to bind and activate EGFR (4). Binding of soluble or membrane bound TGF-alpha to EGFR leads to receptor dimerization, tyrosine autophosphorylation, and activation of downstream signaling components. TGF-alpha and related peptides play an important role in the progression of cancer as well as in neuropathological processes (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The dynamic polymerization and depolymerization of actin filaments, a process governed by external and internal signaling events, is vital for cell motility (immune cell function, migration, invasion, metastasis, angiogenesis), cell division and adhesion. Among the many regulators of actin dynamics are profilins. Profilins are conserved actin binding proteins that affect the rate of actin polymerization by binding actin monomers and promoting the exchange of ADP for ATP (reviewed in 1). Profilins bind to proteins involved in the regulation of actin dynamics including palladin (2), dynamin-1 (3), VASP (4) and N-WASP (5). In mice, knockout of the ubiquitously expressed profilin-1 indicates that the protein is essential for embryonic development (6). Profilin-2 is primarily expressed in brain and functions in the regulation of neurite outgrowth (7), membrane trafficking and endocytosis (3). The recently cloned profilin-3 is expressed in kidney and testes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).