20% off purchase of 3 or more products* | Learn More >>

Product listing: RCHY1 Antibody, UniProt ID Q96PM5 #5754 to RRM1 Antibody, UniProt ID P23921 #3388

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: RING finger and CHY1 zinc finger domain-containing protein 1 (RCHY1) is a newly identified RING-H2-type protein-ubiquitin E3 ligase that is expressed as multiple isoforms generated through alternative splicing of mRNA transcripts (1,2). Notably, RCHY1 is a p53-regulated gene and multiple studies have shown that RCHY1 directly binds p53 to promote its ubiquitin-dependent proteasomal degradation, ultimately leading to repression of p53 growth suppressive transcriptional activity (1,3). RCHY1 is also likely to promote deregulated cell proliferation by targeting the CDK inhibitor, p27 Kip1, for proteasomal degradation (4). In agreement with its growth promoting activity, RCHY1 overexpression has been linked to cancer of the lung (5,6) and prostate (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: RECQL4 is a member of the RecQ family of DNA helicases that plays an important role in global genomic stability. There are five members of this family in humans, and mutations in three of these, BLM, WRN and RECQL4, give rise to disorders that are characterized by premature aging and a predisposition to cancer (1). Despite the presence of a helicase domain, no helicase activity has been reported for RECQL4. Rather, RECQL4 has an ATPase function that is stimulated by ssDNA, and a ssDNA annealing activity that is inhibited by RPA (2). RECQL4 has been reported to interact with ubiquitin ligases UBR1 and UBR2 (3). The role of RECQL4 in tumor suppression and the maintenance of genomic integrity has been attributed to it’s activities associated with the regulation of DNA replication, and DNA recombination and repair (4-6).Mutations in the RECQL4 gene have been identified in a subset of patients with Rothmund-Thomson syndrome (RTS) - a disorder characterized by growth deficiency, skin and skeletal abnormalities, and cancer predisposition. Two more autosomal recessive disorders have been associated with RECQL4 gene mutations: RAPADILINO, and Baller-Gerold syndromes (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: REDD1 (REgulated in Development and DNA damage responses) expression is induced by hypoxia, cell stress, apoptosis and DNA damage. REDD1 is a transcriptional target of p53 and p63 following DNA damage, and links p63 to Ros (1). REDD1 functions as a negative regulator of mTOR in response to hypoxia in a tuberin-dependent manner (2). Depending on cell context, REDD1 can either be protecting or detrimental for cells under oxidative or ischemic stresses (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Reg4 (regenerating islet-derived protein 4) is a member of a multigene family of Reg proteins (1). Reg proteins are secreted glycoproteins belonging to the calcium (C-type) dependent lectin superfamily, although they can in fact bind polysaccharides, mannan, and heparin in the absence of calcium (2,3). Reg4 is expressed in the gastrointestinal (GI) tract, in normal colon mucosa, and is up-regulated in colon adenocarcinoma, pancreatic cancer, gastric adenocarcinoma, inflammatory bowel disease (Crohn’s disease and ulcerative colitis) (4,5).It has recently been shown that Reg4 marks a population of deep secretory cells at the bottom of the crypts in the colon. In the upper gastrointestinal tract, Paneth cells support the Lgr5+ positive stem cells that reside at the base of deep crypts by providing signals such as Wnt3, EGF, and Notch ligands for stem cell maintenance. No Paneth cells however exist in the colon crypts. It is proposed that the Reg4+ population serves as an analogous support system for the LGR5+ positive stem cell population in the colon (1,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Renin is a secreted proteinase whose enzymatic activity is to convert angiotensinogen into angiotensin I in the plasma, initiating a process that results in an elevation of blood pressure and increased sodium retention by the kidney (1). Renin is synthezed in kidney as a procursor, prorenin, which is released into circulation. Both renin and prorenin can bind to (pro)renin receptor and induce angiotensin-independent signaling events leading to activation of MAPKs and up-regulation of TGF-β1 and matrix proteins (2, 3). Defects in renin can cause renal tubular dysgenesis, a severe autosomal recessive disorder of renal tubular development (4, 5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Reptin/RuvBL2 and Pontin/RuvBL1 are closely related members of the AAA+ (ATPase associated with diverse cellular activities) superfamily of proteins, and are putatively homologous to bacterial RuvB proteins that drive branch migration of Holliday junctions (1). Reptin and Pontin function together as essential components of chromatin remodeling and modification complexes, such as INO80, TIP60, SRCAP, and Uri1, which play key roles in regulating gene transcription (1,2). In their capacity as essential transcriptional co-regulators, Reptin and Pontin have both been implicated in oncogenic transformations, including those driven by c-Myc, β-catenin, and E1A (2-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Receptor for Hyaluronic acid-Mediated Motility (RHAMM, known also as CD168 or HMMR) was first identified as a putative receptor for hyaluronic acid (HA) that modulated HA-mediated cell motility (1). RHAMM/CD168 is functionally similar to the HA receptor CD44; however in contrast to CD44, RHAMM/CD168 does not contain a transmembrane domain or a signal peptide leader sequence, and so is not targeted exclusively to the cell membrane (1). RHAMM/CD168 has multiple isoforms; some are reportedly exported to the cell membrane in response to signaling by growth factors and cytokines (e.g., TGF-β) (2, 3), whereas others have been implicated in intracellular functions including mitotic spindle regulation (4). Cell surface RHAMM/CD168 is localized to membrane ruffles, consistent with proteins that regulate cell motility (1). Numerous research studies have reported that the expression of RHAMM/CD168 is positively associated with cancer cell growth, motility and/or metastasis (5-7), in addition to HA-mediated inflammation (8), suggesting the potential for therapeutic approaches that target HA-receptor mediated signaling (9,10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI) (1). RhoA, RhoB and RhoC are highly homologous, but appear to have divergent biological functions. Carboxy-terminal modifications and differences in subcellular localization allow these three proteins to respond to and act on distinct signaling molecules (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI). RhoGDI affects Rho activity by inhibiting nucleotide exchange and membrane association, regulating activity and localization (Reviewed in 1, 2). The inhibitory and shuttling functions of RhoGDI have been uncoupled using mutant forms of RhoGDI (3). Phosphorylation of GDIs and/or GTPases can modulate their affinity for each other and, therefore, GTPase mediated signaling. PAK1 phosphorylation of RhoGDI at serines 101 and 174 causes release and activation of Rac1, but not RhoA (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ribosomal protein L13a (RPL13a, 60S ribosomal protein L13a) is a member of the L13 ribosomal protein family and a structural component of the 60S ribosomal subunit (1). RPL13a appears to play an important role in transcript-specific translational silencing. Interferon-γ induces the phosphorylation of RPL13a and triggers the release of this protein from the 60S ribosomal subunit (2). Free RPL13a protein binds to the GAIT (interferon-γ-activated inhibitor of translation) complex at the 3'-UTR of ceruloplasmin (Cp) mRNA to repress Cp expression (2). RPL13a bound to the GAIT complex interacts with eIF4G, which prevents the recruitment of 43S ribosomal subunit and results in transcript-specific translation suppression (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L26 (RPL26) is a component of the 60S ribosomal subunit and is involved in translation (1,2). It was shown that RPL26 increases the translation of p53 mRNA by binding to its 5' untranslated region (UTR) after DNA damage. Studies found that overexpression of RPL26 enhances the binding of p53 mRNA to the ribosomes and increases p53 translation. Overexpression of RPL26 also induces cell-cycle arrest at G1 phase and increases radiation-stimulated apoptosis (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ribosomal protein L7a is a highly conserved ribosome protein localized to 60S ribosomal subunit (1). The protein has distinct domains that target the newly synthesized polypeptide to nucleus and the nucleoli, the site of ribosome biosynthesis (2). Ribosomal protein L7a can also interact with RNA in vitro through two distinct RNA-binding domains in the protein (3). Taken together, nucleolar localization and the ability to bind RNA suggests that ribosomal protein L7a may act as an important component for ribosome biosynthesis and function.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase with two different complexes. One complex contains mTOR, GβL and raptor, which is a target of rapamycin. The other complex, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTOR-rictor complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). This complex has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ring1A plays a role in polycomb group (PcG) protein function. PcG proteins are critically involved in transcriptional repression of Hox genes during development (1,2). PcG proteins form two distinct complexes: EED-EZH2 and the PRC complex, which is composed of at least Bmi1 and Ring1A/Ring1B. The EZH2-containing complex is responsible for the methylation of H3K27, and the PRC complex ubiquitylates H2A. EZH2 methylation is required prior to PRC ubiquitylation, and both are essential for Hox gene repression (3). It has recently been shown that PcG proteins silence a group of developmentally important regulator genes, referred to as bivalent genes (4). This regulation may be responsible for the ability of stem cells to self renew or switch to differentiate into multipotent progenitors. Aberrant epigenetic silencing by PcG proteins is also thought to be important in tumorigenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The receptor-interacting protein (RIP) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that trigger pro-survival and inflammatory responses through the activation of NF-κB, as well as pro-apoptotic pathways (1). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and recruitment to TNF-R1 through interaction with TRADD (2,3). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (4,5). RIP also interacts with TNF-receptor-associated factors (TRAFs) and can recruit IKKs to the TNF-R1 signaling complex via interaction with NEMO, leading to IκB phosphorylation and degradation (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (2,3). Caspase-8-dependent cleavage of the RIP death domain can trigger the apoptotic activity of RIP (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The receptor-interacting protein (RIP) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that trigger pro-survival and inflammatory responses through the activation of NF-κB, as well as pro-apoptotic pathways (1). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and recruitment to TNF-R1 through interaction with TRADD (2,3). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (4,5). RIP also interacts with TNF-receptor-associated factors (TRAFs) and can recruit IKKs to the TNF-R1 signaling complex via interaction with NEMO, leading to IκB phosphorylation and degradation (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (2,3). Caspase-8-dependent cleavage of the RIP death domain can trigger the apoptotic activity of RIP (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding protein (PEBP) family that associates with Raf-1 and the MEK and MAP kinases (1). RKIP has been shown to form a complex with Raf-1, MEK, and Erk (2). Although MEK and Erk can simultaneously bind RKIP, the association between Raf-1 and RKIP and that of RKIP and MEK are mutually exclusive. Thus, RKIP competitively disrupts the Raf-1-MEK complex and effectively terminates signal transmission from Raf-1 to MAP kinases (2). The inhibitory effect of RKIP on MAP kinase signaling is eliminated by PKC phosphorylation of RKIP at Ser153 (3). PKC phosphorylation on Ser153 also promotes the association of RKIP with GRK2, which prevents GRK2-dependent internalization of GPCR (4). RKIP also interacts with modules of the NF-κB pathway, including NF-κB-inducing kinase (NIK), TAK1, IKKα and IKKβ (5). These interactions antagonize cytokine-induced activation of the NF-κB pathway (5). Restoration of RKIP expression is associated with the inhibition of prostate cancer metastasis, implying that RKIP may be a potential clinical target as a suppressor of tumor metastasis through inhibition of vascular invasion (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding protein (PEBP) family that associates with Raf-1 and the MEK and MAP kinases (1). RKIP has been shown to form a complex with Raf-1, MEK, and Erk (2). Although MEK and Erk can simultaneously bind RKIP, the association between Raf-1 and RKIP and that of RKIP and MEK are mutually exclusive. Thus, RKIP competitively disrupts the Raf-1-MEK complex and effectively terminates signal transmission from Raf-1 to MAP kinases (2). The inhibitory effect of RKIP on MAP kinase signaling is eliminated by PKC phosphorylation of RKIP at Ser153 (3). PKC phosphorylation on Ser153 also promotes the association of RKIP with GRK2, which prevents GRK2-dependent internalization of GPCR (4). RKIP also interacts with modules of the NF-κB pathway, including NF-κB-inducing kinase (NIK), TAK1, IKKα and IKKβ (5). These interactions antagonize cytokine-induced activation of the NF-κB pathway (5). Restoration of RKIP expression is associated with the inhibition of prostate cancer metastasis, implying that RKIP may be a potential clinical target as a suppressor of tumor metastasis through inhibition of vascular invasion (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding protein (PEBP) family that associates with Raf-1 and the MEK and MAP kinases (1). RKIP has been shown to form a complex with Raf-1, MEK, and Erk (2). Although MEK and Erk can simultaneously bind RKIP, the association between Raf-1 and RKIP and that of RKIP and MEK are mutually exclusive. Thus, RKIP competitively disrupts the Raf-1-MEK complex and effectively terminates signal transmission from Raf-1 to MAP kinases (2). The inhibitory effect of RKIP on MAP kinase signaling is eliminated by PKC phosphorylation of RKIP at Ser153 (3). PKC phosphorylation on Ser153 also promotes the association of RKIP with GRK2, which prevents GRK2-dependent internalization of GPCR (4). RKIP also interacts with modules of the NF-κB pathway, including NF-κB-inducing kinase (NIK), TAK1, IKKα and IKKβ (5). These interactions antagonize cytokine-induced activation of the NF-κB pathway (5). Restoration of RKIP expression is associated with the inhibition of prostate cancer metastasis, implying that RKIP may be a potential clinical target as a suppressor of tumor metastasis through inhibition of vascular invasion (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: RMP (RPB5-Mediating Protein), also known as URI (Unconventional prefoldin RBP5 Interactor), was described as an unconventional member of the prefoldin (PFD) family of chaperones that are involved in actin and tubulin folding (1-4). Like conventional members of the α-class of PFDs, RMP contains N- and C-terminal α-helical coiled-coil structures connected by two β hairpins. In addition, RMP possesses an RPB5-binding segment and a long C-terminal acidic segment. It is posited that RMP exists as a component of a macromolecular complex within human cells and functions as a molecular scaffold to assemble a PFD complex containing other PFDs and proteins with functions in transcription and ubiquitination. Indeed, evidence is provided that RMP negatively modulates RNA polymerase II-dependent transcription by binding to TFIIF (5) and RBP5 (6) and is involved in mTOR signaling by coordinating the regulation of nutrient availability with gene expression (1). In accord with its ability to coordinate gene expression with nutrient availability, RMP was shown to be a mitochondrial substrate of S6K1. S6K1-mediated phosphorylation of RMP at Ser371 triggers a series of biochemical events that constitute a negative feedback loop, in part, aimed at restraining S6K1 survival signaling and ensuring that the mitochondrial threshold for apoptosis corresponds to availability of nutrients and growth factors (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ROCK (Rho-associated kinase), a family of serine/threonine kinases, is an important downstream target of Rho-GTPase and plays an important role in Rho-mediated signaling. Two isoforms of ROCK have been identified: ROCK1 and ROCK2. ROCK is composed of N-terminal catalytic, coiled-coil, and C-terminal PH (pleckstrin homology) domains. The C-terminus of ROCK negatively regulates its kinase activity (1,2). Caspase-3-induced cleavage of ROCK1 and direct cleavage of ROCK2 by granzyme B (grB) activates ROCK and leads to phosphorylation of myosin light chain and inhibition of myosin phosphatase (3). This phosphorylation may account for the mechanism by which Rho regulates cytokinesis, cell motility, cell membrane blebbing during apoptosis, and smooth muscle contraction (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: ROR1 and ROR2 are orphan receptor tyrosine kinases that are most closely related to MuSK and the Trk family of neurotrophin receptors. They are characterized by the presence of extracellular frizzled-like cysteine-rich domains and membrane-proximal kringle domains, both of which are assumed to mediate protein-protein interactions (1-3). The ROR family RTKs are evolutionarily conserved among Caenorhabditis elegans, Drosophila, mice, and humans (1,4). Although the functions of ROR kinases are unknown, similarities between ROR and MuSK and Trk kinases have led to speculation that ROR kinases regulate synaptic development. CAM-1, a C. elegans ortholog of the ROR family RTKs, plays several important roles in regulating cellular migration, polarity of asymmetric cell divisions, and axonal outgrowth of neurons during nematode development (4). mROR1 and mROR2 may play differential roles during the development of the nervous system (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: ROR1 and ROR2 are orphan receptor tyrosine kinases that are most closely related to MuSK and the Trk family of neurotrophin receptors. They are characterized by the presence of extracellular frizzled-like cysteine-rich domains and membrane-proximal kringle domains, both of which are assumed to mediate protein-protein interactions (1-3). The ROR family RTKs are evolutionarily conserved among Caenorhabditis elegans, Drosophila, mice, and humans (1,4). Although the functions of ROR kinases are unknown, similarities between ROR and MuSK and Trk kinases have led to speculation that ROR kinases regulate synaptic development. CAM-1, a C. elegans ortholog of the ROR family RTKs, plays several important roles in regulating cellular migration, polarity of asymmetric cell divisions, and axonal outgrowth of neurons during nematode development (4). mROR1 and mROR2 may play differential roles during the development of the nervous system (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: RPA70 (HSSB, REPA1, RF-A, RP-A, p70) is a component of a heterotrimeric complex, composed of 70, 32/30 and 14 kDa subunits, collectively known as RPA. RPA is a single stranded DNA binding protein, whose DNA binding activity is believed to reside entirely in the 70 kDa subunit. The complex is required for almost all aspects of cellular DNA metabolism such as DNA replication (1-3), recombination, cell cycle and DNA damage checkpoints, and all major types of DNA repair including nucleotide excision, base excision, mismatch and double-strand break repairs (4-7). In response to genotoxic stress in eukaryotic cells, RPA has been shown to associate with the Rad9/Rad1/Hus1 (9-1-1) checkpoint complex (8). RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) (9-11). Phosphorylation of RPA32 occurs at serines 4, 8 and 33 (11). Hyperphosphorylation may alter RPA-DNA and RPA-protein interactions. In addition to the checkpoint partners, RPA interacts with a wide variety of protein partners, including proteins required for normal replication such as RCF, PCNA and Pol α, and also proteins involved in SV40 replication, such as DNA polymerase I and SV40 large T antigen (10,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: RPA70 (HSSB, REPA1, RF-A, RP-A, p70) is a component of a heterotrimeric complex, composed of 70, 32/30 and 14 kDa subunits, collectively known as RPA. RPA is a single stranded DNA binding protein, whose DNA binding activity is believed to reside entirely in the 70 kDa subunit. The complex is required for almost all aspects of cellular DNA metabolism such as DNA replication (1-3), recombination, cell cycle and DNA damage checkpoints, and all major types of DNA repair including nucleotide excision, base excision, mismatch and double-strand break repairs (4-7). In response to genotoxic stress in eukaryotic cells, RPA has been shown to associate with the Rad9/Rad1/Hus1 (9-1-1) checkpoint complex (8). RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) (9-11). Phosphorylation of RPA32 occurs at serines 4, 8 and 33 (11). Hyperphosphorylation may alter RPA-DNA and RPA-protein interactions. In addition to the checkpoint partners, RPA interacts with a wide variety of protein partners, including proteins required for normal replication such as RCF, PCNA and Pol α, and also proteins involved in SV40 replication, such as DNA polymerase I and SV40 large T antigen (10,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L5 (RPL5) is one of several proteins that comprise the 60S ribosomal subunit. RPL5 binds 5S rRNA and the nucleolar RPL11 protein to form the 5S ribonucleoprotein particle (RNP) that is incorporated into the large 60S ribosomal subunit (1). An RP-MDM2-p53 protein complex that contains ribosomal proteins RPL5, RPL11, and RPL23 acts as a nucleolar stress sensor that binds and inhibits MDM2 ubiquitin ligase activity and enhances p53-mediated transcriptional activity (2,3). RPL5 cooperates with RPL11 to influence ribosome biogenesis through regulating expression of the transcription factor c-Myc, which acts as the master regulator of ribosome biogenesis (4). Mutations in the corresponding RPL5 gene are associated with Diamond-Blackfan anemia, which is a form of red blood cell aplasia, and some cases of pediatric T-cell acute lymphoblastic leukemia (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Ribonucleotide reductase catalyzes the rate-limiting step in the synthesis of deoxynucleotide triphosphates (dNTPs). The regulatory M1 subunit (RRM1) is present throughout the cell division cycle, but downregulated in quiescent cells (1). Research studies have demonstrated that RRM1 is involved in carcinogenesis and tumor progression, and its expression is correlated with resistance to chemotherapy in non-small cell lung cancer (2-4).