20% off purchase of 3 or more products* | Learn More >>

Product listing: CD141/Thrombomodulin (E7Y9P) XP® Rabbit mAb, UniProt ID P07204 #43514 to CD20 (2H7) Mouse mAb (FITC Conjugate), UniProt ID P11836 #87491

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD141/Thrombomodulin (TM, THBD, BDCA-3) is an integral membrane protein expressed on the surface of endothelial cells (1). Acting as a cofactor with Thrombin, CD141/Thrombomodulin activates and initiates the Protein C anticoagulant pathway (1-2). CD141/Thrombomodulin is expressed by a small subset of human CD11c+ myeloid dendritic cells (3-4). These CD141+XCR1+ dendritic cells cross-present antigens to naïve CD8+ T cells, priming them to become activated cytotoxic CD8+ T cells (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin)

Background: SSEA-1 antibody detects a lactoseries oligosaccharide antigen that is expressed on the surface of mouse embryonal carcinoma and embryonic stem cells (1). This antigen is also found on early mouse embryos and both mouse and human germ cells, but is absent on human embryonic stem cells and human embryonic carcinoma cells. Expression of SSEA1 in these human cell types increases upon differentiation, while on the mouse cell types differentiation leads to decreased expression (2).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: CD151 (PETA-3, SFA-1) is a member of the evolutionarily conserved tetraspanin family of multipass glycoproteins (TM4SF), highlighted by four transmembrane domains, two extracellular loops, and N/C-termini that reside within the cytoplasm. Identified as the first member of the tetraspanin family to be implicated in tumorigenesis, research studies have demonstrated that CD151 participates in tumor neovascularization (1), tumor cell cell invasion (2), and cell adhesion (3). Furthermore, a positive correlation exists between CD151 expression levels and poor prognosis for tumors of the lung (4), kidney (5), and prostate (6). CD151 is localized predominantly to the plasma membrane and research studies have demonstrated that CD151 exerts its pro-tumorigenic effects, in part, through the modulation of laminin-binding integrins (7-9) and oncogenic receptor tyrosine kinases, such as c-Met (10,11) and EGFR (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: CD151 (PETA-3, SFA-1) is a member of the evolutionarily conserved tetraspanin family of multipass glycoproteins (TM4SF), highlighted by four transmembrane domains, two extracellular loops, and N/C-termini that reside within the cytoplasm. Identified as the first member of the tetraspanin family to be implicated in tumorigenesis, research studies have demonstrated that CD151 participates in tumor neovascularization (1), tumor cell cell invasion (2), and cell adhesion (3). Furthermore, a positive correlation exists between CD151 expression levels and poor prognosis for tumors of the lung (4), kidney (5), and prostate (6). CD151 is localized predominantly to the plasma membrane and research studies have demonstrated that CD151 exerts its pro-tumorigenic effects, in part, through the modulation of laminin-binding integrins (7-9) and oncogenic receptor tyrosine kinases, such as c-Met (10,11) and EGFR (12).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: CD64 (FcgammaRI), CD32 (FcgammaRII) and CD16 (FcgammaRIII) are three classes of the immunoglobulin superfamily. CD64 has a high affinity for IgG with three Ig-like domains while CD32 and CD16 have low affinities with two Ig-like domains. Two genes encode CD16-A and CD16-B resulting only in a 6 amino acid difference in their ectodomains. However, CD16-A has a transmembrane anchor versus CD16-B, which has a glycosylphosphatidylinositol (1). CD64, CD32 and CD16 are membrane glycoproteins that are expressed by all immunologically active cells and trigger various immune functions (activate B cells, phagocytosis, antibody-dependent cellular cytotoxicity, immune complex clearance and enhancement of antigen presentation) (2). CD16 cross-linking induces tyrosine phosphorylation (Tyr394) of Lck in NK cells (3). CD32 has tyrosine-based activation motifs in the cytoplasmic domain in contrast to CD16, which associates with molecules possessing these motifs (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD64 (FcgammaRI), CD32 (FcgammaRII) and CD16 (FcgammaRIII) are three classes of the immunoglobulin superfamily. CD64 has a high affinity for IgG with three Ig-like domains while CD32 and CD16 have low affinities with two Ig-like domains. Two genes encode CD16-A and CD16-B resulting only in a 6 amino acid difference in their ectodomains. However, CD16-A has a transmembrane anchor versus CD16-B, which has a glycosylphosphatidylinositol (1). CD64, CD32 and CD16 are membrane glycoproteins that are expressed by all immunologically active cells and trigger various immune functions (activate B cells, phagocytosis, antibody-dependent cellular cytotoxicity, immune complex clearance and enhancement of antigen presentation) (2). CD16 cross-linking induces tyrosine phosphorylation (Tyr394) of Lck in NK cells (3). CD32 has tyrosine-based activation motifs in the cytoplasmic domain in contrast to CD16, which associates with molecules possessing these motifs (1).

$289
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$229
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$249
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$329
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PerCP-Cy5.5® and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$329
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to violetFluor™ 450 and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: CD163 is a transmembrane scavenger receptor expressed on the macrophage surface. It has 9 B-type SRCR extracellular domains mediating serum haptoglobin clearing/endocytosis, pathogen binding and signal transduction, and calcium binding (1, 2). CD163 is used as a surface marker of M2 type macrophages, including M2 type tumor associated macrophages (TAMs), which facilitate cancer progression by secreting cytokines to promote angiogenesis, immunosuppression and metastasis (3). Inflammatory stimulation and stress signal can induce extracellular domain shedding of CD163 to generate soluble CD163 (sCD163). The increased sCD163 level in serum is associated with low-grade inflammation in disease conditions (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD64 (FcgammaRI), CD32 (FcgammaRII) and CD16 (FcgammaRIII) are three classes of the immunoglobulin superfamily. CD64 has a high affinity for IgG with three Ig-like domains while CD32 and CD16 have low affinities with two Ig-like domains. Two genes encode CD16-A and CD16-B resulting only in a 6 amino acid difference in their ectodomains. However, CD16-A has a transmembrane anchor versus CD16-B, which has a glycosylphosphatidylinositol (1). CD64, CD32 and CD16 are membrane glycoproteins that are expressed by all immunologically active cells and trigger various immune functions (activate B cells, phagocytosis, antibody-dependent cellular cytotoxicity, immune complex clearance and enhancement of antigen presentation) (2). CD16 cross-linking induces tyrosine phosphorylation (Tyr394) of Lck in NK cells (3). CD32 has tyrosine-based activation motifs in the cytoplasmic domain in contrast to CD16, which associates with molecules possessing these motifs (1).

$249
100 µg
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$129
100 µg
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$139
100 µg
This Cell Signaling Technology antibody is conjugated to PE and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$199
100 µg
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$249
100 µg
This Cell Signaling Technology antibody is conjugated to PerCP-Cy5.5® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$230
100 µg
This Cell Signaling Technology antibody is conjugated to redFluor™ 710 and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$215
100 µg
This Cell Signaling Technology antibody is conjugated to violetFluor™ 450 and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$254
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$203
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$263
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$336
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$336
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PerCP and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD2 is a transmembrane glycoprotein expressed early in thymocyte development and present on most circulating T cells (1, 2). CD2 plays a role in T cell adhesion through binding to its ligand CD58 (LFA-3) (3). Stimulation of CD2 also leads to T cell activation and proliferation (2). T cells from mice deficient in both CD2 and CD28 have severe defects in T cell activation and function, while T cells deficient in either CD2 or CD28 are still capable of mounting a response, suggesting that CD2 and CD28 may have overlapping functions and may be able to compensate for each other (4). In addition, engagement of CD2 and CD58 was recently demonstrated to be the primary costimulatory signal in T cells that lack CD28 (5). CD2 expression also distinguishes a subset of plasmacytoid dendritic cells found in tumors and tonsils that express lysozyme, higher levels of IL-12 p40, and higher levels of CD80 (6).

$259
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: B-lymphocyte antigen CD20 (also known as MS4A1; Membrane-spanning 4-domains subfamily A member 1) is a cell surface phosphoprotein involved in the regulation of B cell activation and proliferation (1,2). It is commonly used as a marker to identify B cells and is expressed throughout B cell development, up until their differentiation into plasma cells. CD20 has no known ligand, and its expression and function are largely conserved between human and mouse (1-3). Evidence suggests that CD20 is necessary for store operated calcium (SOC) entry, which leads to elevated cytoplasmic calcium levels required for B cell activation (4-5). Anti-CD20 antibody immunotherapy depletes B cells by activation of the innate monocytic network and is a common treatment for B cell lymphomas, leukemias, and autoimmune diseases (6).

$299
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC-Cy7® and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: B-lymphocyte antigen CD20 (also known as MS4A1; Membrane-spanning 4-domains subfamily A member 1) is a cell surface phosphoprotein involved in the regulation of B cell activation and proliferation (1,2). It is commonly used as a marker to identify B cells and is expressed throughout B cell development, up until their differentiation into plasma cells. CD20 has no known ligand, and its expression and function are largely conserved between human and mouse (1-3). Evidence suggests that CD20 is necessary for store operated calcium (SOC) entry, which leads to elevated cytoplasmic calcium levels required for B cell activation (4-5). Anti-CD20 antibody immunotherapy depletes B cells by activation of the innate monocytic network and is a common treatment for B cell lymphomas, leukemias, and autoimmune diseases (6).

$172
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: B-lymphocyte antigen CD20 (also known as MS4A1; Membrane-spanning 4-domains subfamily A member 1) is a cell surface phosphoprotein involved in the regulation of B cell activation and proliferation (1,2). It is commonly used as a marker to identify B cells and is expressed throughout B cell development, up until their differentiation into plasma cells. CD20 has no known ligand, and its expression and function are largely conserved between human and mouse (1-3). Evidence suggests that CD20 is necessary for store operated calcium (SOC) entry, which leads to elevated cytoplasmic calcium levels required for B cell activation (4-5). Anti-CD20 antibody immunotherapy depletes B cells by activation of the innate monocytic network and is a common treatment for B cell lymphomas, leukemias, and autoimmune diseases (6).