Microsize antibodies for $99 | Learn More >>

Product listing: HMOX2/HO-2 (D9J9U) Rabbit mAb, UniProt ID P30519 #32790 to HSP27 (D6W5V) Rabbit mAb, UniProt ID P04792 #95357

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Heme oxygenases (HMOX or HO) catalyze the rate-limiting step of the oxidative degradation of heme into iron, carbon monoxide, and biliverdin (1). Biliverdin is then converted to bilirubin (2). Heme is a strong pro-oxidant whereas bilirubin is a strong antioxidant (2). Research studies suggest disregulation of heme oxygenases may contribute to oxidative stress-related diseases (2). There are three isozymes of heme oxygenases: HMOX1/HO-1, HMOX2/HO-2, and HMOX3/HO-3 (1,2). HMOX1/HO-1 is inducible by heme and other stress stimuli (1,3). HMOX2/HO-2 and HMOX3/HO-3 are constitutively expressed (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Hepatocyte nuclear factor 1α (HNF1α, also known as TCF1 or MODY3) is a transcription factor that plays a role in the tissue-specific regulation of liver gene expression (1). Research has shown that heterogeneous mutations of HNF1α are linked to maturity onset diabetes of the young (MODY) (2). Recent studies indicate that increased concentrations of free fatty acids can reduce the expression of FoxA2/HNF3β and HNF1α in pancreatic β-cells and lead to their nuclear exclusion, resulting in symptoms of several metabolic syndromes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Hepatocyte nuclear factor 1α (HNF1α, also known as TCF1 or MODY3) is a transcription factor that plays a role in the tissue-specific regulation of liver gene expression (1). Research has shown that heterogeneous mutations of HNF1α are linked to maturity onset diabetes of the young (MODY) (2). Recent studies indicate that increased concentrations of free fatty acids can reduce the expression of FoxA2/HNF3β and HNF1α in pancreatic β-cells and lead to their nuclear exclusion, resulting in symptoms of several metabolic syndromes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that belongs to the steroid hormone receptor superfamily and is enriched in liver (1). HNF4α, in association with PGC-1α, activates gluconeogenic genes such as phosphoenolpyruvate carboxykinase and glucose-6-phosphatase genes in fasted livers (2,3). Conditional knockout of the HNF4α gene in the mouse liver destroys lipid homeostasis and leads to lipid accumulation in the liver and a reduction of serum cholesterol and triglyceride levels (4). Mutations in HNF4α have been linked to maturity-onset diabetes of the young (MODY) (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). The A/B subfamily of hnRNP includes A1, A2/B1, A3, and A0. hnRNP A0 is phosphorylated at Ser84 by MAPKAPK-2 in response to LPS treatment in mouse macrophage cells, which might play a key role in stimulating translation of the TNF-α message (2).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). The A/B subfamily of hnRNP includes A1, A2/B1, A3, and A0. hnRNP A0 is phosphorylated at Ser84 by MAPKAPK-2 in response to LPS treatment in mouse macrophage cells, which might play a key role in stimulating translation of the TNF-α message (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$270
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism and transport of nuclear pre-mRNA transcripts (1). Alternative splicing produces transcripts that encode two homologous hnRNP proteins, hnRNPA2 and hnRNPB1, from a single gene sequence (2). Studies demonstrate hnRNP A2/B1 splicing repression across multiple targets (3,4) and that both proteins can bind and protect telomere repeat sequences from DNase digestion (5,6). Altered expression of hnRNP B1 is seen in several forms of cancer, including squamous cell carcinoma, adenocarcinoma, and various forms of lung cancer (7). Over expression of hnRNP B1 may be associated with inhibition of DNA-PK activity and impaired DNA repair during early stages of cancer development (8). Autoantigens to hnRNP A2/B1 (termed RA33) are associated with rheumatoid arthritis, systemic lupus erythromatosus and mixed connective tissue disease (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C1/C2) has multiple biological functions including transcriptional regulation, DNA repair, and RNA processing. hnRNP C1/C2 acts as a ‘molecular ruler’ in the mRNA processing pathway, committing nascent transcripts from the chromatin template to the mRNA export pathway once the nascent transcript becomes longer than 200-300 nucleotides (1). hnRNP C1/C2 associates with SWI/SNF and NurD family members to form the locus control region (LCR)-associated remodeling complex (LARC), which binds to β-globin gene promoter to prevent transcriptional silencing. Studies indicate that without hnRNP C1/C2, LARC does not associate with its target DNA sequence (2,3). hnRNP C1/C2 and other hnRNP family members interact with DNA damage response (DDR) proteins (4). hnRNP proteins regulate double stranded break (DSB) repair by promoting either homologous recombination (HR) or non-homologous end joining (NHEJ) (4). hnRNP C1/C2 downregulates the expression of miR-21, which leads to the increased expression of programmed cell death 4 (PDCD4) protein in glioblastoma multiforme (GBM) (5). Research studies have shown that silencing of hnRNP C1/C2 renders GBM cells more susceptible to apoptosis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: PCPB2 (also known as hnRNP E2) is an RNA-binding protein that interacts in a sequence-specific fashion with single-stranded poly (rC). Through their poly(rC)-binding ability, PCBPs regulate mRNA stability and translation (1,2). PCBP2 is an iron chaperone; it delivers iron to ferritin for storage and mediates metalation of certain iron-containing proteins (3-5). PCBP2 interacts with the iron importer DMT1 (divalent metal transporter 1) and the iron exporter FPN1 (ferroportin 1) and regulates their activities (6,7). PCBP2 is induced by viral infection and targets MAVS for polyubiquitination and degradation (8-10). Recent reports demonstrate that it is involved in Hippo signaling, miRNA processing, immune suppression, and cancer (11-15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein K (hnRNP K) belongs to a family of RNA binding multiprotein complexes (hnRNP proteins) that facilitate pre-mRNA processing and transport of mRNA from the nucleus to cytoplasm (1-3). hnRNP K contains three unique structural motifs termed KH domains that bind poly(C) DNA and RNA sequences (4,5). Intricate architecture enables hnRNP K to facilitate mRNA biosynthesis (6), transcriptional regulation (7), and signal transduction. Research studies have shown that cytoplasmic hnRNP K expression is increased in oral squamous cell carcinoma and pancreatic cancer, and may be a potential prognostic factor (8,9). hnRNP K coordinates with p53 to regulate its target gene transcription in response to DNA damage. Proteasome degradation of hnRNP K is mediated by E3 ligase MDM2 (10). The interaction between hnRNP K and c-Src leads to hnRNP K phosphorylation, which allows for hnRNP K activation of silenced mRNA translation (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein Q and R belong to a family of hnRNP proteins that are involved in RNA binding, RNA biosynthesis, and mRNA transport from the nucleus to the cytoplasm (1-3). These two proteins are encoded by different genes but have 83% homology. hnRNP Q has three alternative splice variants (hnRNP Q1-3) (1-3). Methylation of carboxy-terminal arginine residues is required for nuclear localization (4). hnRNP Q binds to AU-rich mRNA in conjunction with AUF1 and regulates mRNA decay (5). hnRNP Q isoforms play a crucial role in mediating nuclear function of survival of motor neuron (SMN) complex (6,7) and modulating RNA biosynthesis and hepatitis C virus replication (8). hnRNP R was identified recently and its function is still under investigation (9), however hnRNP R does not duplicate the biological function of hnRNP Q. Both hnRNP Q and R are present in cytoplasmic mRNP granules containing untranslated mRNAs (10) and both interact with SMN (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: HOIL-1-interacting protein (HOIP/RNF31), a RING-type E3 ubiquitin ligase, is the catalytic subunit of the Linear Ubiquitin Chain Assembly Complex (LUBAC) that is associated with TNF-R1 (1). Research studies have shown that the LUBAC consists of three subunits: HOIP, HOIL-1L, and Sharpin that facilitate canonical NF-kB activation in response to pro inflammatory cytokines through M1-linked linear ubiquitination of NEMO and RIP1 (2-6). As part of the LUBAC, HOIP has also been implicated in the negative regulation of interferon-mediated antiviral signaling through the suppression of RIG-I activation (7). The role of HOIP in LUBAC function and human disease is underscored by naturally occurring mutations in HOIP that impair LUBAC assembly and NF-kb activation. Patients that are homozygous for this mutation in HOIP have multi organ auto inflammation and immunodeficiency (8).

$293
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: HOP, also known as stress-induced phospho protein 1 (STIP), is a co-chaperone to the major heat shock proteins, Hsp70 and Hsp90, and appears in early receptor complexes (1,2). Through mutual binding to both Hsp70 and Hsp90, Hop functions as an adaptor that can integrate Hsp70 and Hsp90 interactions (3,4). HOP is an abundant and highly conserved protein which is composed of three tetratricopeptide repeat (TPR) domains (TPR1, TPR2a and TPR2b) and two DP repeat domains (DP1 and DP2), whose function has not been fully resolved (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: HOP, also known as stress-induced phospho protein 1 (STIP), is a co-chaperone to the major heat shock proteins, Hsp70 and Hsp90, and appears in early receptor complexes (1,2). Through mutual binding to both Hsp70 and Hsp90, Hop functions as an adaptor that can integrate Hsp70 and Hsp90 interactions (3,4). HOP is an abundant and highly conserved protein which is composed of three tetratricopeptide repeat (TPR) domains (TPR1, TPR2a and TPR2b) and two DP repeat domains (DP1 and DP2), whose function has not been fully resolved (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: HOXB13 is a member of the HOXB cluster which, along with the HOXA, HOXC, and HOXD clusters, governs embryonic patterning along the cranio-caudal axis (1,2). HOXB13 plays a key role in the development of the ventral prostate, where it is expressed highly from the embryonic stage through adulthood (3,4). Research studies have shown that both overexpression and RNA interference can inhibit the growth of prostate cancer cells. HOXB13 can function as a tumor suppressor by negatively regulating growth through repression of TCF4 and androgen receptor (AR) signaling (4,5). However, HOXB13 has also been shown to be overexpressed in more invasive prostate cancers, breast and ovarian cancers, and hepatocellular carcinomas (6-9). A common germline mutation G84E in the HOXB13 protein has recently been found to be associated with significant increased risk of prostate cancer (10). Currently, HOXB13 is being evaluated as a marker for metastatic lesions of prostate origin (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Heterochromatin protein 1 (HP1) is a family of heterochromatic adaptor molecules involved in both gene silencing and higher order chromatin structure (1). All three HP1 family members (α, β, and γ) are primarily associated with centromeric heterochromatin; however, HP1β and γ also localize to euchromatic sites in the genome (2,3). HP1 proteins are approximately 25 kDa in size and contain a conserved amino-terminal chromodomain, followed by a variable hinge region and a conserved carboxy-terminal chromoshadow domain. The chromodomain facilitates binding to histone H3 tri-methylated at Lys9, a histone "mark" closely associated with centromeric heterochromatin (4,5). The variable hinge region binds both RNA and DNA in a sequence-independent manner (6). The chromoshadow domain mediates the dimerization of HP1 proteins, in addition to binding multiple proteins implicated in gene silencing and heterochromatin formation, including the SUV39H histone methyltransferase, the DNMT1 and DNMT3a DNA methyltransferases, and the p150 subunit of chromatin-assembly factor-1 (CAF1) (7-9). In addition to contributing to heterochromatin formation and propagation, HP1 and SUV39H are also found complexed with retinoblastoma (Rb) and E2F6 proteins, both of which function to repress euchromatic gene transcription in quiescent cells (10,11). HP1 proteins are subject to multiple types of post-translational modifications, including phosphorylation, acetylation, methylation, ubiquitination, and sumoylation, suggesting multiple means of regulation (12-14).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterochromatin protein 1 (HP1) is a family of heterochromatic adaptor molecules involved in both gene silencing and higher order chromatin structure (1). All three HP1 family members (α, β, and γ) are primarily associated with centromeric heterochromatin; however, HP1β and γ also localize to euchromatic sites in the genome (2,3). HP1 proteins are approximately 25 kDa in size and contain a conserved amino-terminal chromodomain, followed by a variable hinge region and a conserved carboxy-terminal chromoshadow domain. The chromodomain facilitates binding to histone H3 tri-methylated at Lys9, a histone "mark" closely associated with centromeric heterochromatin (4,5). The variable hinge region binds both RNA and DNA in a sequence-independent manner (6). The chromoshadow domain mediates the dimerization of HP1 proteins, in addition to binding multiple proteins implicated in gene silencing and heterochromatin formation, including the SUV39H histone methyltransferase, the DNMT1 and DNMT3a DNA methyltransferases, and the p150 subunit of chromatin-assembly factor-1 (CAF1) (7-9). In addition to contributing to heterochromatin formation and propagation, HP1 and SUV39H are also found complexed with retinoblastoma (Rb) and E2F6 proteins, both of which function to repress euchromatic gene transcription in quiescent cells (10,11). HP1 proteins are subject to multiple types of post-translational modifications, including phosphorylation, acetylation, methylation, ubiquitination, and sumoylation, suggesting multiple means of regulation (12-14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) is a ubiquitously expressed, multidomain-containing protein that is tyrosine phosphorylated upon activation of multiple receptor tyrosine kinases (1). HRS contains a proline-rich region, which may mediate interactions with SH3 domain-containing proteins (1). Research studies have also demonstrated that HRS possesses a phosphatidylinositol 3-phosphate-binding FYVE-type zinc finger domain and a coiled-coil domain that target it to membranes of the endosomal compartment (2-4). HRS also possesses a ubiquitin-interacting motif (UIM) that binds ubiquitinated membrane proteins and, in conjunction with Eps15 and STAM proteins of the ESCRT-0 complex, facilitates their sorting through the endosomal compartment for eventual degradation in the lysosome (5-8). Research studies demonstrate that phosphorylation and ubiquitination of HRS play a role in EGFR intracellular trafficking and degradation (9,10).

$293
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: HS1 (HCLS1, LckBP1, p75) is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (1,2). HS1 contains four cortactin repeats and a single SH3 domain (2). This intracellular protein is phosphorylated following immune receptor activation, which promotes recruitment of HS1 to the immune synapse (3-5). Phosphorylation of HS1 is required to regulate actin dynamics and provide docking sites for many other signaling molecules, such as Vav1 and PLCγ1 (6). HS1 also plays an important role in platelet activation (7).

$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: HS1 (HCLS1, LckBP1, p75) is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (1,2). HS1 contains four cortactin repeats and a single SH3 domain (2). This intracellular protein is phosphorylated following immune receptor activation, which promotes recruitment of HS1 to the immune synapse (3-5). Phosphorylation of HS1 is required to regulate actin dynamics and provide docking sites for many other signaling molecules, such as Vav1 and PLCγ1 (6). HS1 also plays an important role in platelet activation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The type 6 17-β-hydroxysteroid dehydrogenase (HSD17B6, 17-β-HSD 6) regulates cellular hydroxysteroids by catalyzing the conversion of androsterone to epiandrosterone (1). This enzyme displays both oxidoreductase and epimerase activities, and is also known as 3(α->β)-hydroxysteroid epimerase. The interaction between HSD17B6 and hydroxysteroid compounds has an important effect on steroid activity as these compounds typically act in a stereo-specificity manner (1). Research studies show that the transcriptional activity of androgen receptor in prostate cell lines treated by androstanediol correlates with HSD17B6 protein level, which suggests an important role for enzyme in prostate cancer growth (2).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated HSF1 (D3L8I) Rabbit mAb #12972.
APPLICATIONS
REACTIVITY
Bovine, Dog, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry

Background: All organisms respond to increased temperatures and other environmental stresses by rapidly inducing the expression of highly conserved heat shock proteins (HSPs) that serve as molecular chaperones to refold denatured proteins and promote the degradation of damaged proteins. Heat shock gene transcription is regulated by a family of heat shock factors (HSFs), transcriptional activators that bind to heat shock response elements (HSEs) located upstream of all heat shock genes (1). HSEs are highly conserved among organisms and contain multiple adjacent and inverse iterations of the pentanucleotide motif 5'-nGAAn-3'. HSFs are less conserved and share only 40% sequence identity. Vertebrate cells contain four HSF proteins: HSF1, 2 and 4 are ubiquitous, while HSF3 has only been characterized in avian species. HSF1 induces heat shock gene transcription in response to heat, heavy metals, and oxidative agents, while HSF2 is involved in spermatogenesis and erythroid cell development. HSF3 and HSF4 show overlapping functions with HSF1 and HSF2. The inactive form of HSF1 exists as a monomer that localizes to both the cytoplasm and nucleus, but does not bind DNA (1,2). In response to stress, HSF1 becomes phosphorylated, forms homotrimers, binds DNA and activates heat shock gene transcription (1,2). HSF1 activity is positively regulated by phosphorylation of Ser419 by PLK1, which enhances nuclear translocation, and phosphorylation of Ser230 by CaMKII, which enhances transactivation (3,4). Alternatively, HSF1 activity is repressed by phosphorylation of serines at 303 and 307 by GSK3 and ERK1, respectively, which leads to binding of 14-3-3 protein and sequestration of HSF1 in the cytoplasm (5,6). In addition, during attenuation from the heat shock response, HSF1 is repressed by direct binding of Hsp70, HSP40/Hdj-1, and HSF binding protein 1 (HSBP1) (7).

$269
100 µl
APPLICATIONS
REACTIVITY
Bovine, Dog, Human, Monkey, Mouse, Pig, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: All organisms respond to increased temperatures and other environmental stresses by rapidly inducing the expression of highly conserved heat shock proteins (HSPs) that serve as molecular chaperones to refold denatured proteins and promote the degradation of damaged proteins. Heat shock gene transcription is regulated by a family of heat shock factors (HSFs), transcriptional activators that bind to heat shock response elements (HSEs) located upstream of all heat shock genes (1). HSEs are highly conserved among organisms and contain multiple adjacent and inverse iterations of the pentanucleotide motif 5'-nGAAn-3'. HSFs are less conserved and share only 40% sequence identity. Vertebrate cells contain four HSF proteins: HSF1, 2 and 4 are ubiquitous, while HSF3 has only been characterized in avian species. HSF1 induces heat shock gene transcription in response to heat, heavy metals, and oxidative agents, while HSF2 is involved in spermatogenesis and erythroid cell development. HSF3 and HSF4 show overlapping functions with HSF1 and HSF2. The inactive form of HSF1 exists as a monomer that localizes to both the cytoplasm and nucleus, but does not bind DNA (1,2). In response to stress, HSF1 becomes phosphorylated, forms homotrimers, binds DNA and activates heat shock gene transcription (1,2). HSF1 activity is positively regulated by phosphorylation of Ser419 by PLK1, which enhances nuclear translocation, and phosphorylation of Ser230 by CaMKII, which enhances transactivation (3,4). Alternatively, HSF1 activity is repressed by phosphorylation of serines at 303 and 307 by GSK3 and ERK1, respectively, which leads to binding of 14-3-3 protein and sequestration of HSF1 in the cytoplasm (5,6). In addition, during attenuation from the heat shock response, HSF1 is repressed by direct binding of Hsp70, HSP40/Hdj-1, and HSF binding protein 1 (HSBP1) (7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: HSL (hormone-sensitive lipase) catalyzes the hydrolysis of triacylglycerol, the rate-limiting step in lipolysis. Lipolytic stimuli activate adenylyl cyclase and thus increase intracellular cAMP levels, which in turn activate protein kinase A (PKA). PKA phosphorylates HSL at Ser563, Ser659, and Ser660, which stimulates HSL activity (1,2). In contrast, AMPK phosphorylates HSL at Ser565, which reduces HSL phosphorylation at Ser563 by PKA and inhibits HSL activity (2,3). Recent work indicates that phosphorylation at Ser600 by p44/42 MAPKs also enhances the enzymatic activity of HSL (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).