Microsize antibodies for $99 | Learn More >>

Product listing: O-GlcNAc (CTD110.6) Mouse mAb (HRP Conjugate) #12938 to OS-9 (D8P4G) Rabbit mAb, UniProt ID Q13438 #12497

$303
100 µl
This Cell Signaling Technology® antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated O-GlcNAc (CTD110.6) Mouse mAb #9875.
APPLICATIONS
REACTIVITY
All Species Expected, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: A distinct form of protein glycosylation, beta-linked N-acetyl-glucosamine (GlcNAc) moieties can be added to serine or threonine residues of proteins (1,2). This differs from other forms of glycosylation, as it typically is a single moiety rather than the complex branched sugars that are more commonly studied. It is thought that these modifications happen in a much more dynamic cycle more reminiscent of phosphorylation modifications (3). GlcNAc modified proteins are found in the cytoplasm and nucleus and are modulated by means of specific O-GlcNAc transferases (OGT) as well as GlcNAcase activity that can be inhibited using the Thiamet-G (TMG) inhibitor. Mass spectrometry analysis of this modification has been complicated due to the loss of the GlcNAc group during ionization and fragmentation, but methods and technologies such as electron transfer dissociation (ETD) are opening up new avenues to study these modifications. O-GlcNAc could play an important role in many cellular processes, including metabolism, growth, morphogenesis, apoptosis, transcription, and it may play a critical role in cancer.(4)

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: A distinct form of protein glycosylation, beta-linked N-acetyl-glucosamine (GlcNAc) moieties can be added to serine or threonine residues of proteins (1,2). This differs from other forms of glycosylation, as it typically is a single moiety rather than the complex branched sugars that are more commonly studied. It is thought that these modifications happen in a much more dynamic cycle more reminiscent of phosphorylation modifications (3). GlcNAc modified proteins are found in the cytoplasm and nucleus and are modulated by means of specific O-GlcNAc transferases (OGT) as well as GlcNAcase activity that can be inhibited using the Thiamet-G (TMG) inhibitor. Mass spectrometry analysis of this modification has been complicated due to the loss of the GlcNAc group during ionization and fragmentation, but methods and technologies such as electron transfer dissociation (ETD) are opening up new avenues to study these modifications. O-GlcNAc could play an important role in many cellular processes, including metabolism, growth, morphogenesis, apoptosis, transcription, and it may play a critical role in cancer.(4)

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: 2’-5’-oligoadenylate synthetase 1 (OAS1) is an antiviral protein induced by type 1 interferon that plays a key role in the cellular innate immune response (1). The OAS family of proteins includes OAS1, OAS2, OAS3, and OASL in humans (2). The OAS1 enzyme produces the second messenger 2’-5’-linked oligoadenylate in response to cytosolic dsRNA. These 2’-5’-linked oligoadenylates bind to the ribonuclease RNase L, which then degrades viral and cellular RNA (3). Research studies indicate that the OAS1 system inhibits protein synthesis and induces apoptosis in virally infected cells, which limits viral infection (4). Alternative splicing generates multiple isoforms of human OAS1, including p41 and the canonical p46 (5,6). Polymorphisms in the corresponding OAS1 gene have been examined for possible association with increased susceptibility to type 1 diabetes mellitus, multiple sclerosis, and infection by viral pathogens (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Oct-1 (POU2F1) is a ubiquitously expressed, octamer-binding transcription factor containing a POU domain with a homeobox subdomain (1). Oct-1 has been shown to interact with several transcription factors in mediating specific gene expression, including SNAPc (2), OBF-1 (a B-cell transcriptional coactivator protein) (3), TFIIB (4), and TBP (TATA-box-binding protein) (5). Its POU DNA-binding domain allows Oct-1 the flexibility to facilitate the binding and recruitment of several tissue-specific cofactors to either positively or negatively regulate a variety of genes, exerting an important role in development (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Oct-4A (C30A3) Rabbit mAb #2840.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
REACTIVITY
Human, Mouse

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: 2-oxoglutarate dehydrogenase (OGDH) is one of three enzymes in the α ketoglutarate dehydrogenase complex (OGDC) that is responsible for catalyzing a rate-regulating step of the tricarboxylic acid (Krebs) cycle. Together with dihydrolipoamide S-succinyltransferase (DLST) and dihydrolipoamide dehydrogenase (DLD), OGDH helps to convert 2-oxoglutarate to succinyl-CoA and CO2 within eukaryotic mitochondria (1). Regulation of this enzyme complex is important for mitochondrial energy metabolism within cells (2). Research studies indicate that OGDH activity within the mitochondrial matrix is regulated by multiple factors, including calcium, the adenine nucleotides ATP and ADP, and NADH (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: O-GlcNAcylation is a post-translational modification where β-D-N-acetylglucosamine (GlcNAc) is covalently linked to cytoplasmic and nuclear proteins at serine or threonine residues (1,2). This modification is important in many cellular processes including metabolism, cell growth and morphogenesis, apoptosis, and transcription (2,3), and research studies have implicated this modification in cancer (1). The reversible protein modification by O-GlcNAc, which has been suggested to be a nutrient and stress sensor, is catalyzed by two highly conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) (4).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated OGT (D1D8Q) Rabbit mAb #24083.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: O-GlcNAcylation is a post-translational modification where β-D-N-acetylglucosamine (GlcNAc) is covalently linked to cytoplasmic and nuclear proteins at serine or threonine residues (1,2). This modification is important in many cellular processes including metabolism, cell growth and morphogenesis, apoptosis, and transcription (2,3), and research studies have implicated this modification in cancer (1). The reversible protein modification by O-GlcNAc, which has been suggested to be a nutrient and stress sensor, is catalyzed by two highly conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) (4).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Olfactomedin-4 (OLFM4, hGC-1) is a member of the Olfactomedin family, a small group of extracellular proteins defined by the presence of a conserved "Olfactomedin domain" that is thought to facilitate protein-protein interactions (1). OLFM4 is a secreted glycoprotein, which forms disulfide bond-mediated oligomers, and is thought to mediate cell adhesion through its interactions with extracellular matrix proteins such as lectins (2). Human OLFM4 was first cloned from myeloid cells (3) and is expressed in a distinct subset of neutrophils, though the functional significance of this differential expression pattern remains unclear (4). Among normal tissues, the expression of OLFM4 protein is most abundant in intestinal crypts (5), where it has garnered attention as a possible marker of intestinal stem cells (6). Notably, OLFM4 expression is markedly increased in several tumor types, including colorectal, gastric, pancreas, lung, and breast (reviewed in [1]). Furthermore, research studies show that the expression levels of OLFM4 vary in relation to the severity and/or differentiation status of multiple tumor types (1, 6-8), leading to the suggestion that OLFM4 may have utility as a prognostic marker in some cancer patients (9).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Olfactomedin-4 (OLFM4, hGC-1) is a member of the Olfactomedin family, a small group of extracellular proteins defined by the presence of a conserved "Olfactomedin domain" that is thought to facilitate protein-protein interactions (1). OLFM4 is a secreted glycoprotein, which forms disulfide bond-mediated oligomers, and is thought to mediate cell adhesion through its interactions with extracellular matrix proteins such as lectins (2). Human OLFM4 was first cloned from myeloid cells (3) and is expressed in a distinct subset of neutrophils, though the functional significance of this differential expression pattern remains unclear (4). Among normal tissues, the expression of OLFM4 protein is most abundant in intestinal crypts (5), where it has garnered attention as a possible marker of intestinal stem cells (6). Notably, OLFM4 expression is markedly increased in several tumor types, including colorectal, gastric, pancreas, lung, and breast (reviewed in [1]). Furthermore, research studies show that the expression levels of OLFM4 vary in relation to the severity and/or differentiation status of multiple tumor types (1, 6-8), leading to the suggestion that OLFM4 may have utility as a prognostic marker in some cancer patients (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mitochondria continuously divide and fuse. This dynamic process is highly regulated in response to various physiological cues (1,2). The GTPase OPA1 mediates the fusion of the mitochondrial inner membrane. Constitutive proteolytic processes mediated by OMA1 (S1 site) and YME1L (S2 site) convert long isoforms (L-OPA1) into short isforms (S-OPA1). The balance between L-OPA1 and S-OPA1 is required to maintain a normal morphology of mitochondria (3,4).OMA1 is synthesized as a precursor and processed into a mature form (5,6). OMA1 is constitutively active and cleaves L-OPA1 at the S1 site. However, various stress stimuli can further activate OMA1 and result in the rapid and complete conversion of L-OPA1 into S-OPA1, which inhibits fusion and causes mitochondrial fragmentation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Changes in mitochondrial dynamics regulated by environmental cues affect mitochondrial size and shape and have been shown to dramatically impact mitochondrial metabolism, apoptosis, and autophagy (1). These processes are largely controlled by mitochondrial dynamin-related GTPases, including mitofusin-1, mitofusin-2, OPA1, and DRP1. DRP1 regulates mitochondrial fission, while the mitofusins and OPA1 control fusion at the outer and inner mitochondrial membrane, respectively.OPA1, or Optic Atrophy 1, was originally identified as a genetic cause for Autosomal Dominant Optic Atrophy, a neuropathy resulting in progressive visual loss (2,3). OPA1 is a widely expressed protein localized to the inner mitochondrial membrane, which regulates mitochondrial fusion and cristae morphology and protects against apoptosis (4-6). OPA1 activity is tightly regulated through alternative splicing and post-translational modifications including complex proteolytic processing by multiple proteases (7-12). In addition, OPA1 expression can be induced under conditions of metabolic demand through a pathway involving Parkin induced NF-κB activation (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Changes in mitochondrial dynamics regulated by environmental cues affect mitochondrial size and shape and have been shown to dramatically impact mitochondrial metabolism, apoptosis, and autophagy (1). These processes are largely controlled by mitochondrial dynamin-related GTPases, including mitofusin-1, mitofusin-2, OPA1, and DRP1. DRP1 regulates mitochondrial fission, while the mitofusins and OPA1 control fusion at the outer and inner mitochondrial membrane, respectively.OPA1, or Optic Atrophy 1, was originally identified as a genetic cause for Autosomal Dominant Optic Atrophy, a neuropathy resulting in progressive visual loss (2,3). OPA1 is a widely expressed protein localized to the inner mitochondrial membrane, which regulates mitochondrial fusion and cristae morphology and protects against apoptosis (4-6). OPA1 activity is tightly regulated through alternative splicing and post-translational modifications including complex proteolytic processing by multiple proteases (7-12). In addition, OPA1 expression can be induced under conditions of metabolic demand through a pathway involving Parkin induced NF-κB activation (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Optineurin is a signaling protein involved in maintenance of the Golgi complex, membrane trafficking, NF-κB, and interferon signaling. Mutations in the gene encoding optineurin have been associated with human diseases including glaucoma, Paget disease of bone, and amyotrophic lateral sclerosis (ALS) (1-2). Optineurin is thought to contribute to these pathologies through regulation of inflammatory signaling, autophagy, and mitophagy (1, 3). The NF-κB-activating kinase/TANK-binding kinase 1 (NAK/TBK1) phosphorylates optineurin at serine 177, regulating optineurin’s role in autophagy and mitophagy (4-6). The tumor suppressor HACE1 ubiquitylates optineurin, promoting the interaction of optineurin with the autophagy receptor p62/SQSTM1 (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Mouse, Rat

Application Methods: Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin)

Background: Orexin, also called HCRT or hypocretin, is expressed as a precursor that is processed into two biologically active neuropeptides called orexin-A (HCRT1) and orexin-B (HCRT2) (1). Orexin is expressed in the lateral and posterior hypothalamus and plays a role in feeding behavior (1). The orexin neuropeptides act by stimulating the two orexin receptors that belong to the G Protein-Coupled Receptors family (1). Orexin receptor 1 is mostly found in the hypothalamic region, while orexin receptor 2 is also found in the cerebral cortex and the nucleus accumbent (2). Orexin also plays a role in adipocyte homeostasis and is required for brown adipose tissue development, differentiation, and function (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: LINE-1, also known as L1, is a non-long terminal repeat (non-LTR) retrotransposon with hundreds of thousands of copies in the human genome (1, 2). Like all non-LTRs, L1 replicates by target-primed reverse transcription (TPRT) (3). The L1 retrotransposon encodes two proteins critical to this process: ORF1p and ORF2p. ORF2p contributes to endonuclease and reverse transcriptase activity, while ORF1p acts as a nucleic acid chaperone that binds RNA (4-8). Many types of cancers have been shown to have L1 insertions within tumor suppressor genes, disrupting their expression and contributing to tumorigenesis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Amplified in Osteosarcoma 9 (OS-9) was identified as a gene that is frequently amplified in human sarcomas (1). OS-9 is an N-glycosylated ER resident protein that harbors a mannose-6-phosphate receptor homology (MRH) domain and plays a critical role in mammalian ER quality control, in part, by functioning as a lectin. There are two major isoforms of OS-9 (OS-9-1, OS-9-2) that are generated through alternative splicing of mRNA (2). The expression of both OS-9 isoforms is enhanced upon activation of the IRE1/XBP1 pathway in cells exposed to acute ER stress. It is postulated that OS-9 serves as a retention factor for glycosylated and nonglycosylated, misfolded proteins, preventing their progression through the secretory pathway (3,4). Furthermore, OS-9 promotes the removal of misfolded proteins from the ER lumen and their subsequent proteasome-dependent degradation via its association with the Hrd1-SEL1L ubiquitin ligase complex (5).