Microsize antibodies for $99 | Learn More >>

Product listing: Phospho-β-Catenin (Ser552) (D8E11) Rabbit mAb, UniProt ID P35222 #5651 to PITSLRE/CDK11 (D88B3) Rabbit mAb, UniProt ID P21127 #5524

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Phospholamban (PLN) was identified as a major phosphoprotein component of the sarcoplasmic reticulum (SR) (1). Its name, "lamban", is derived from the greek word "lambano" meaning "to receive", so named due to the fact that phospholamban is heavily phosphorylated on serine and threonine residues in response to cardiac stimulation (1). Although originally thought to be a single 20-25 kDa protein due to its electrophoretic mobility on SDS-PAGE, PLN is actually a 52 amino acid, 6 kDa, membrane-spanning protein capable of forming stable homooligomers, even in the presence of SDS (2). Despite very high expression in cardiac tissue, phospholamban is also expressed in skeletal and smooth muscle (3). Localization of PLN is limited to the SR, where it serves as a regulator of the sarco-endoplasmic reticulum calcium ATPase, SERCA (4). PLN binds directly to SERCA and effectively lowers its affinity for calcium, thus reducing calcium transport into the SR. Phosphorylation of PLN at Ser16 by Protein Kinase A or myotonic dystrophy protein kinase and/or phosphorylation at Thr17 by Ca2+/calmodulin-dependent protein kinase results in release of PLN from SERCA, relief of this inhibition, and increased calcium uptake by the SR (reviewed in 5,6). It has long been held that phosphorylation at Ser16 and Thr17 occurs sequentially, but increasing evidence suggests that phosphorylation, especially at Thr17, may be differentially regulated (reviewed in 7,8).Rodent models of heart failure have shown that the expression level and degree of phosphorylation of PLN are critical in modulating calcium flux and contractility (reviewed in 9-11). Deletion or decreased expression of PLN promotes increased calcium flux and increased cardiac contractility, whereas overexpression of PLN results in sequestration of SERCA, decreased calcium flux, reduced contractility, and rescue of cardiac dysfunction and failure in mouse models of hypertension and cardiomyopathy (reviewed in 10). Distinct mutations in PLN have been detected in humans, resulting either in decreased or no expression of PLN protein (12,13) or binding defects between PLN, SERCA and/or regulatory proteins (14,15), both of which result in cardiac myopathy and heart failure. Interestingly, while the human phenotype of most PLN defects mimic those seen in rodent and vice versa, there are some instances where the type and severity of cardiac disease resulting from PLN mutations in rodent and human differ, making a consensus mechanism elusive.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Class II phosphatidylinositol 3-kinases (PI3K) contain a C-terminal C2 domain that is unique to the class II isoforms of the PI3K family. This C2 domain mediates protein and phospholipid binding acitivities (1,2). PI3K Class II α generates phosphatidylinositol 3-phosphate (PIP3) and phosphatidylinositol 3,4-bisphosphate (PI(3, 4)P2) from phosphatidylinositol and phosphatidylinositol 4-phosphate (3). PI3K Class II α is located in various intracellular locations such as the trans-Golgi network, endocytic compartments, clathrin-coated vesicles, and nuclear speckles (1,4,5). Research studies have indicated that PI3K Class II α regulates the assembly and distribution of clathrin, resulting in the modulation of clathrin-dependent trafficking and sorting within the trans Golgi network (5,6). PI3K Class II α also mediates translocation of the glucose transporter GLUT4 to the plasma membrane in response to insulin (7). PI3K Class II α has also been shown to regulate neurosecretory granule exocytosis (8) and vascular smooth muscle contraction (9). Unlike other PI3K family members, PI3K Class II α is less sensitive to the PI3K inhibitors wortmannin and LY294002 (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Three distinct types of phosphoinositide 3-kinases (PI3K) have been characterized. Unlike other PI3Ks, PI3K class III catalyzes the phosphorylation of phosphatidylinositol at the D3 position, producing phosphatidylinositol-3-phosphate (PIP3) (1). PI3K class III is the mammalian homolog of Vps34, first identified in yeast. PI3K class III interacts with the regular subunit p150, the mammalian homolog of Vps15, which regulates cellular membrane association through myristoylation (2,3). PIP3 recruits several proteins with FYVE or PX domains to membranes regulating vesicular transport and protein sorting (4). Moreover, PI3K class III has been shown to regulate autophagy, trimeric G-protein signaling, and the mTOR nutrient-sensing pathway (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Three distinct types of phosphoinositide 3-kinases (PI3K) have been characterized. Unlike other PI3Ks, PI3K class III catalyzes the phosphorylation of phosphatidylinositol at the D3 position, producing phosphatidylinositol-3-phosphate (PIP3) (1). PI3K class III is the mammalian homolog of Vps34, first identified in yeast. PI3K class III interacts with the regular subunit p150, the mammalian homolog of Vps15, which regulates cellular membrane association through myristoylation (2,3). PIP3 recruits several proteins with FYVE or PX domains to membranes regulating vesicular transport and protein sorting (4). Moreover, PI3K class III has been shown to regulate autophagy, trimeric G-protein signaling, and the mTOR nutrient-sensing pathway (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated PIAS1 (D33A7) XP® Rabbit mAb #3550.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The protein inhibitor of activated Stat (PIAS) proteins, which include PIAS1, PIAS3, PIASx, and PIASy, were originally characterized based on their interaction with the Stat family of transcription factors (1,2). PIAS1, PIAS3, and PIASx interact with and repress Stat1, Stat3, and Stat4, respectively (1-3). Deletion of PIAS1 leads to inhibition of interferon-inducible genes and increased protection against infection (4). The PIAS family contains a conserved RING domain that has been linked to a function as a small ubiquitin-related modifier (SUMO) ligase, coupling the SUMO conjugating enzyme Ubc9 with its substrate proteins (5,6). Numerous studies have now shown that PIAS family members can regulate the activity of transcription factors through distinct mechanisms, including NF-κB (7,8), c-Jun, p53 (5,9), Oct-4 (10), and Smads (11,12). The activity of PIAS1 is regulated by both phosphorylation and arginine methylation. Inflammatory stimuli can induce IKK-mediated phosphorylation of PIAS1 at Ser90, which is required for its activity (13). In addition, PRMT1 induces arginine methylation of PIAS1 at Arg303 following interferon treatment and is associated with its repressive activity on Stat1 (14).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The protein inhibitor of activated Stat (PIAS) proteins, which include PIAS1, PIAS3, PIASx, and PIASy, were originally characterized based on their interaction with the Stat family of transcription factors (1,2). PIAS1, PIAS3, and PIASx interact with and repress Stat1, Stat3, and Stat4, respectively (1-3). Deletion of PIAS1 leads to inhibition of interferon-inducible genes and increased protection against infection (4). The PIAS family contains a conserved RING domain that has been linked to a function as a small ubiquitin-related modifier (SUMO) ligase, coupling the SUMO conjugating enzyme Ubc9 with its substrate proteins (5,6). Numerous studies have now shown that PIAS family members can regulate the activity of transcription factors through distinct mechanisms, including NF-κB (7,8), c-Jun, p53 (5,9), Oct-4 (10), and Smads (11,12). The activity of PIAS1 is regulated by both phosphorylation and arginine methylation. Inflammatory stimuli can induce IKK-mediated phosphorylation of PIAS1 at Ser90, which is required for its activity (13). In addition, PRMT1 induces arginine methylation of PIAS1 at Arg303 following interferon treatment and is associated with its repressive activity on Stat1 (14).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The protein inhibitor of activated Stat (PIAS) proteins, which include PIAS1, PIAS3, PIASx, and PIASy, were originally characterized based on their interaction with the Stat family of transcription factors (1,2). PIAS1, PIAS3, and PIASx interact with and repress Stat1, Stat3, and Stat4, respectively (1-3). Deletion of PIAS1 leads to inhibition of interferon-inducible genes and increased protection against infection (4). The PIAS family contains a conserved RING domain that has been linked to a function as a small ubiquitin-related modifier (SUMO) ligase, coupling the SUMO conjugating enzyme Ubc9 with its substrate proteins (5,6). Numerous studies have now shown that PIAS family members can regulate the activity of transcription factors through distinct mechanisms, including NF-κB (7,8), c-Jun, p53 (5,9), Oct-4 (10), and Smads (11,12). The activity of PIAS1 is regulated by both phosphorylation and arginine methylation. Inflammatory stimuli can induce IKK-mediated phosphorylation of PIAS1 at Ser90, which is required for its activity (13). In addition, PRMT1 induces arginine methylation of PIAS1 at Arg303 following interferon treatment and is associated with its repressive activity on Stat1 (14).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: The protein inhibitor of activated Stat (PIAS) proteins, which include PIAS1, PIAS3, PIASx, and PIASy, were originally characterized based on their interaction with the Stat family of transcription factors (1,2). PIAS1, PIAS3, and PIASx interact with and repress Stat1, Stat3, and Stat4, respectively (1-3). Deletion of PIAS1 leads to inhibition of interferon-inducible genes and increased protection against infection (4). The PIAS family contains a conserved RING domain that has been linked to a function as a small ubiquitin-related modifier (SUMO) ligase, coupling the SUMO conjugating enzyme Ubc9 with its substrate proteins (5,6). Numerous studies have now shown that PIAS family members can regulate the activity of transcription factors through distinct mechanisms, including NF-κB (7,8), c-Jun, p53 (5,9), Oct-4 (10), and Smads (11,12). The activity of PIAS1 is regulated by both phosphorylation and arginine methylation. Inflammatory stimuli can induce IKK-mediated phosphorylation of PIAS1 at Ser90, which is required for its activity (13). In addition, PRMT1 induces arginine methylation of PIAS1 at Arg303 following interferon treatment and is associated with its repressive activity on Stat1 (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: PICH is a helicase of the SNF2 family of ATPases and is essential for proper chromosome segregation during mitosis (1). While PICH was originally proposed to participate in spindle assembly checkpoint signaling (1), that function was subsequently called into question (2). When phosphorylated at Thr1063 by CDK1, PICH binds the polo-box domain of the mitotic kinase PLK1 (1) and targets it to chromosome arms (3), where it appears to facilitate proper chromosome arm cohesion (4). PICH is also a substrate of PLK1 (1). Localized to the cytoplasm during interphase, PICH begins to accumulate at centromeres and kinetochores in prometaphase (4). As chromosomes begin to separate at the onset of anaphase, PICH associates with ultrafine threads between sister centromeres thought to be composed of entangled DNA (5), a natural consequence of DNA replication. PICH is proposed to cooperate with BLM, a RecQ-like helicase implicated in the genetic disorder Bloom’s Syndrome, to displace centromeric histones along these threads, thus enabling them to span large distances without breaking (6). This provides a temporal window for topoisomerase IIα-mediated disentanglement (7). Defects in PICH or BLM disrupt proper chromatid segregation and result in the formation of micronuclei (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PICK1, or Protein interacting with C-kinase 1, is a cytosolic adaptor protein composed of an N-terminus PDZ domain and a C-terminus BAR domain that allow protein and membrane interactions, respectively (1,2). PICK1 regulates endosomal trafficking and surface expression of AMPA receptors and is therefore involved in synaptic plasticity (3). PICK1 is a negative regulator of Arp2/3-dependent actin polymerization and also for the development of neuronal architecture (4). Finally, increasing evidence indicates that PICK1 expression is upregulated in a number cancers (5), and that PICK1 interacts with proteins involved in the promotion of tumorigenesis such as Ephrin receptors, Coxsackie-adenovirus receptor (CAR), and ErbB2/Her2 (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Pim proteins (Pim-1, Pim-2 and Pim-3) are oncogene-encoded serine/threonine kinases (1). Pim-1, a serine/threonine kinase highly expressed in hematopoietic cells, plays a critical role in the transduction of mitogenic signals and is rapidly induced by a variety of growth factors and cytokines (1-4). Pim-1 cooperates with c-Myc in lymphoid cell transformation and protects cells from growth factor withdrawal and genotoxic stress-induced apoptosis (5,6). Pim-1 also enhances the transcriptional activity of c-Myb through direct phosphorylation within the c-Myb DNA binding domain as well as phosphorylation of the transcriptional coactivator p100 (7,8). Hypermutations of the Pim-1 gene are found in B-cell diffuse large cell lymphomas (9). Phosphorylation of Pim-1 at Tyr218 by Etk occurs following IL-6 stimulation and correlates with an increase in Pim-1 activity (10). Various Pim substrates have been identified; Bad is phosphorylated by both Pim-1 and Pim-2 at Ser112 and this phosphorylation reverses Bad-induced cell apoptosis (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Pim proteins (Pim-1, Pim-2 and Pim-3) are oncogene-encoded serine/threonine kinases (1). Pim-1, a serine/threonine kinase highly expressed in hematopoietic cells, plays a critical role in the transduction of mitogenic signals and is rapidly induced by a variety of growth factors and cytokines (1-4). Pim-1 cooperates with c-Myc in lymphoid cell transformation and protects cells from growth factor withdrawal and genotoxic stress-induced apoptosis (5,6). Pim-1 also enhances the transcriptional activity of c-Myb through direct phosphorylation within the c-Myb DNA binding domain as well as phosphorylation of the transcriptional coactivator p100 (7,8). Hypermutations of the Pim-1 gene are found in B-cell diffuse large cell lymphomas (9). Phosphorylation of Pim-1 at Tyr218 by Etk occurs following IL-6 stimulation and correlates with an increase in Pim-1 activity (10). Various Pim substrates have been identified; Bad is phosphorylated by both Pim-1 and Pim-2 at Ser112 and this phosphorylation reverses Bad-induced cell apoptosis (11,12).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Pim proteins (Pim-1, Pim-2 and Pim-3) are oncogene-encoded serine/threonine kinases (1). Pim-1, a serine/threonine kinase highly expressed in hematopoietic cells, plays a critical role in the transduction of mitogenic signals and is rapidly induced by a variety of growth factors and cytokines (1-4). Pim-1 cooperates with c-Myc in lymphoid cell transformation and protects cells from growth factor withdrawal and genotoxic stress-induced apoptosis (5,6). Pim-1 also enhances the transcriptional activity of c-Myb through direct phosphorylation within the c-Myb DNA binding domain as well as phosphorylation of the transcriptional coactivator p100 (7,8). Hypermutations of the Pim-1 gene are found in B-cell diffuse large cell lymphomas (9). Phosphorylation of Pim-1 at Tyr218 by Etk occurs following IL-6 stimulation and correlates with an increase in Pim-1 activity (10). Various Pim substrates have been identified; Bad is phosphorylated by both Pim-1 and Pim-2 at Ser112 and this phosphorylation reverses Bad-induced cell apoptosis (11,12).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Pim proteins (Pim-1, Pim-2 and Pim-3) are oncogene-encoded serine/threonine kinases (1). Pim-1, a serine/threonine kinase highly expressed in hematopoietic cells, plays a critical role in the transduction of mitogenic signals and is rapidly induced by a variety of growth factors and cytokines (1-4). Pim-1 cooperates with c-Myc in lymphoid cell transformation and protects cells from growth factor withdrawal and genotoxic stress-induced apoptosis (5,6). Pim-1 also enhances the transcriptional activity of c-Myb through direct phosphorylation within the c-Myb DNA binding domain as well as phosphorylation of the transcriptional coactivator p100 (7,8). Hypermutations of the Pim-1 gene are found in B-cell diffuse large cell lymphomas (9). Phosphorylation of Pim-1 at Tyr218 by Etk occurs following IL-6 stimulation and correlates with an increase in Pim-1 activity (10). Various Pim substrates have been identified; Bad is phosphorylated by both Pim-1 and Pim-2 at Ser112 and this phosphorylation reverses Bad-induced cell apoptosis (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The extracellular matrix (ECM) is a complex structure of secreted macromolecules surrounding mammalian organs and tissues. Controlled interactions between cells and the ECM are important in proliferation, migration, survival, polarity, and differentiation. Cells contact the ECM primarily through focal adhesion complexes, which contain integrins, as well as multiple adaptor and signaling proteins (1). The ILK/PINCH/Parvin (IPP) adaptor complex acts at the interface of the integrin/actin connection to regulate formation of focal adhesions and integrin signaling. Roles for IPP proteins outside of the IPP complex have been proposed, including regulation of gene expression (2,3).PINCH, also known as LIMS1, has been shown to function as a specific regulator of gene expression in glomerular podocytes in response to TGF-β1 (4). Researchers have shown that PINCH is highly expressed in some human tumors, and that PINCH can promote resistance to ionizing radiation through activation of Akt (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: PTEN induced putative kinase 1, PINK1, is a mitochondrial serine/threonine kinase involved in the normal function and integrity of mitochondria, as well as in reduction of cytochrome c release from mitochondria (1-3). PINK1 phosphorylates Parkin and promotes its translocation to mitochondria (2). Research studies have shown that mutations in PINK1 are linked to autosomal recessive early onset Parkinson’s disease, and are associated with loss of protective function, mitochondrial dysfunction, aggregation of α-synuclein, as well as proteasome dysfunction (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha (PtdIns 4-Kinase type II alpha, PIP4K2A), is one of three known members of the type II PIP kinase family, consisting of PIP4K2A, PIP4K2B, and PIP4K2C. Each catalyzes the phosphorylation of phosphatidylinositol 5-monophosphate (PI 5-P) to form phosphatidylinositol 4,5-bisphosphate (PI 4,5-P2). Originally thought to be a PI 4-P 5-Kinase (1,2), PIP4K2A was subsequently shown to phosphorylate the 4-position of PI 5-P, thus defining a new family of lipid kinases (3). Ubiquitously expressed with highest levels in the brain, mutations in PIP4K2A have been described in patients with Schizophrenia and other neuronal disorders (4-8).The levels of PI 5-P change significantly in response to physiological and pathological stimuli (5-12), as well as cell transformation with nucleophosmin anaplastic lymphoma tyrosine kinase (13). In contrast, hypoosmotic shock and histamine decrease cellular levels of PI 5-P (14,15). PIP4K2A has been hypothesized to play a role in suppressing mitogen-dependent increases in PI 5-P in response to DNA damage and cellular stress (16-18). PIP4K2A regulates the levels of PI 5-P in the nucleus by converting the PI 5-P to PI 4,5-P2, thus preventing PI 5-P from interacting with and regulating the ability of ING2 to activate p53 and p53-dependent apoptotic pathways (19). PIP4K2A has been shown to form a heterodimer with PIP4K2B resulting in its recruitment to the nucleus. Interestingly, PIP4K2A is 2000-fold more active than PIP4K2B in this context, suggesting that the two lipid kinases act in tandem, with PIP4K2B acting as the targeting subunit and PIP4K2A the catalytic component (18). PIP4Ks may also play a role in lipid vesicle formation and/or Golgi homeostasis (20).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Pirin is a highly conserved nuclear protein and a member of the cupin superfamily of proteins, all of which contain two conserved β-barrel fold domains (1). Pirin functions as a co-factor for NFI/CTF1 and Bcl-3, implicating it in DNA replication, transcriptional activation and apoptosis (2,3). Both human and bacterial pirins catalyze the di-oxygenation of quercetin, one of a class of widespread naturally occurring flavenoid compounds that have anti-inflammatory and anti-cancer activities (4). Flavenoids exert these beneficial activities by functioning as antioxidants that stabilize cellular free radical molecules and by directly modulating cell signaling pathways involving PI 3-kinase, Akt/PKB, PKC and MAP kinases (5). Quercetin has also been directly implicated in the regulation of NF-κB activity; thus, Pirin may exert its apoptotic functions both by directly regulating Bcl-3/NF-κB activity and by modulating quercetin levels in the cell (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphate transporter 1 (PiT1/SLC20A1) is a sodium dependent phosphate (Pi) transporter that imports Pi into cells. PiT1 was initially identified as a receptor for retroviruses (1,2). It is widely expressed in various tissues where it plays a critical role in maintaining cellular Pi homeostasis (3,4). Phosphate transporter 1 is important in cell proliferation and tumor cell growth independent of PiT1 phosphate transport function (5). Researchers have found that PiT1 is involved in TNF-α induced apoptosis (6). Moreover, phosphate uptake via PiT1 is crucial for vascular calcification (7) and overexpression of PiT1 leads to soft tissue calcification in Werner syndrome patients (8). Additional research indicates that increased PiT1 expression is seen in calcific aortic valve disease (CAVD) tissues, and that PiT1 enhances apoptosis and mineralization by modifying Akt1 levels (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: PITSLRE, alternatively known as cell division kinase 11 (CDK11), is the result of duplication of the CDK11 gene (1). CDK11A and CDK11B encode nearly identical serine/threonine protein kinases, PITSLREB and PITSLREA respectively, both belonging to the p34CDC2 family of protein kinases (2). Full-length PITSLRE/CDK11 (commonly referred to as CDK11p110) is expressed ubiquitously throughout the cell cycle whereas a smaller, alternate transcript (CDK11p58), the result of internal ribosomal entry, is expressed only during the G2/M transition where it promotes centrosome maturation and spindle formation (3-5). During induction of apoptosis by Fas or TNF, or anoikis, PITSLRE/CDK11 is cleaved by caspases to generate p110C, an approximately 46 kDa protein that contains the catalytically active kinase domain of PITSLRE/CDK11 that interacts with and inhibits p21-activated kinase (PAK1) activity (6-8). Full length PITSLRE/CDK11 (CDK11p110) appears to participate in pre-mRNA splicing events. This is demonstrated by the observation that CDK11p110 interacts with numerous splicing factors including RNPS1, 9G8/SRSF7 and cyclin L and that CDK11p110 can phosphorylate and inhibit the splicing activity of 9G8/SRSF7 (9-11).