Microsize antibodies for $99 | Learn More >>

Product listing: SET1B (D1U5D) Rabbit mAb, UniProt ID Q9UPS6 #44922 to Sin1 (D7G1A) Rabbit mAb, UniProt ID Q9BPZ7 #12860

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, six Set1-related proteins exist in mammals: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30. These subunits are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6). Like yeast Set1, all six Set1-related mammalian proteins methylate histone H3 at Lys4 (2-6). MLL translocations are found in a large number of hematological malignancies, suggesting that Set1/COMPASS histone methyltransferase complexes play a critical role in leukemogenesis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SET7/SET9 is a member of the SET domain-containing family, and can specifically methylate Lys4 on histone H3 (1). Like most other lysine-directed histone methyltransferases, it contains a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste and Trithorax proteins. Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Methylation of histone H3 Lys4 enhances transcriptional activation by coordinating the recruitment of BPTF, a component of the NURF chromatin remodeling complex, and WDR5, a component of multiple histone methyltransferase complexes (4,5). In addition, methylation of lysine 4 blocks transcriptional repression by inhibiting the binding of the NURD histone deacetylation complex to the amino-terminal tail of histone H3 and interfering with SUV39H1-mediated methylation of histone H3 Lys9 (1). SET7/SET9 is highly active on free histone H3, but only very weakly methylates H3 within nucleosomes (1). Besides histones, SET7/SET9 also methylates Lys189 of the TAF10, a member of the TFIID transcription factor complex, and Lys372 of the p53 tumor suppressor protein (6,7). Methylation of TAF10 stimulates transcription in a promoter-specific manner by increasing the affinity of TAF10 for RNA polymerase II, which may potentiate pre-initiation complex formation (6). Methylation of p53 at Lys372 increases protein stability and leads to upregulation of target genes such as p21. Thus the loss of SET7/SET9 may represent another mechanism for the inactivation of p53 in human cancers (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: SET domain-containing lysine methyltransferase 8 (SET8), also known as PR/SET domain-containing protein 7 (PR/SET7), is a member of a family of histone lysine methyltransferases, each of which contains a conserved catalytic SET domain originally identified in Drosophila Su[var]3-9, Enhancer of zeste, and Trithorax proteins (1-3). SET8 is a single-subunit enzyme that mono-methylates histone H4 on Lys20, preferably on nucleosomal substrates (1-3). SET8 protein levels and Histone H4 Lys20 methylation are cell cycle regulated, both increasing in S phase and peaking at G2/M phase (4,5). SET8 interacts with the PCNA protein, associates with sites of active DNA synthesis, and is required for DNA replication and genome stability during S phase (5-7). Inhibition of SET8 using shRNA or siRNA results in arrest of replication forks, induction of double-stranded DNA breaks, and a Chk1-mediated cell-cycle arrest in S and G2/M phases of the cell cycle (6,7). Furthermore, SET8 methylates p53 on Lys382, down regulating the pro-apoptotic and checkpoint activation functions of p53 (8). In response to DNA damage, SET8 expression levels decrease, allowing p53 to activate checkpoints and/or apoptosis (8). Both the methylation of histone H4 Lys20 and p53 appear to be important for the functions of SET8 in S phase.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SET domain-containing protein 2 (SETD2 or SET2), also known as lysine N-methyltransferase 3 A (KMT3A), huntingtin yeast partner B (HYBP), and huntingtin-interacting factor (HIF-1), is a ubiquitously expressed nuclear protein methyltransferase that is responsible for the majority of tri-methylation of histone H3 on lysine 36 (H3K36Me3) (1-3). SETD2-mediated H3K36Me3 is critical for proper regulation of transcription elongation, RNA splicing and DNA mismatch repair (1). SETD2 interacts with RNA polymerase II (RNAPII) that is hyper-phosphorylated on the C-terminal domain (CTD) of the largest subunit Rpb1 (2-4). Upon hyper-phosphorylation of the RNAPII CTD during activation of transcriptional elongation, SETD2 is recruited and facilitates tri-methylation of histone H3 lysine 36 in the body of transcriptionally active genes (2-4). H3K36Me3 then acts to recruit the transcription elongation factor FACT, which modulates nucleosome dynamics to facilitate transcription elongation and prevent cryptic transcriptional initiation (5). In addition, H3K36Me3 acts to recruit RNA-splicing proteins and regulate proper splicing of introns concurrent with transcriptional elongation (3, 6-9). In addition to regulating transcription, SETD2-dependent H3K36Me3 regulates DNA mismatch repair by recruiting MutSα (MSH2 and MSH6) to chromatin during G1 and early S phase (10). Loss of SETD2 results in an increase in microsatellite instability and elevated levels of spontaneous mutations (10). SETD2 is often mutated and/or inactivated in multiple types of cancer, including renal cell carcinoma, leukemia, melanoma and liver cancer (11-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SF2/ASF is a member of the Ser-Arg-rich (SR) protein family of highly conserved nuclear phosphoproteins involved in pre-mRNA splicing (1). Besides its role in nuclear pre-mRNA splicing, SF2/ASF has been shown to shuttle between the nucleus and cytoplasm, suggesting additional roles in mRNA transport and cytoplasmic events (2). SF2/ASF associates with translating ribosomes and stimulates translation (3). It also activates translation initiation by suppressing the activity of 4E-BP1, which is mediated by SF2/ASF association with mTOR and the phosphatase PP2A (4). More recent studies have demonstrated a role for SF2/ASF in microRNA processing (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SF2/ASF is a member of the Ser-Arg-rich (SR) protein family of highly conserved nuclear phosphoproteins involved in pre-mRNA splicing (1). Besides its role in nuclear pre-mRNA splicing, SF2/ASF has been shown to shuttle between the nucleus and cytoplasm, suggesting additional roles in mRNA transport and cytoplasmic events (2). SF2/ASF associates with translating ribosomes and stimulates translation (3). It also activates translation initiation by suppressing the activity of 4E-BP1, which is mediated by SF2/ASF association with mTOR and the phosphatase PP2A (4). More recent studies have demonstrated a role for SF2/ASF in microRNA processing (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Splicing factor 3b subunit 1 (SF3B1) is an integral component of the U2 small nuclear ribonucleoprotein (U2 snRNP) and plays an important role in the splicing of pre-mRNA that involves the removal of introns and the joining of exons to form mature mRNA (1-3). The assembly and proper recognition of splice sites are driven by sequences at the pre-mRNA intron-exon splice sites. The 5’ splice donor site is recognized by the U1 snRNP complex, while U2 snRNP binds to the 3’ splice site (branch point), ensuring the anchoring of the spliceosome machinery at the splice sites (3,4). Recent whole exome sequencing studies have demonstrated a high incidence of somatic mutations of SF3B1 in patients with various hematological malignancies such as chronic lymphocytic leukemia and myelodysplastic syndromes (2,3,5,6). Misregulation of pre-mRNA splicing arising from mutations of the spliceosome components such as SF3B1 is thought to contribute to changes in the expression patterns of key proteins that are involved in pathways such as cell cycle progression, cell death, and cancer metabolism (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Secreted Frizzled-related proteins (SFRPs) display homology and structural similarity to the extracellular cysteine-rich Wnt-binding domain of the G protein-coupled receptor Frizzled (1,2). To date, five distinct SFRPs (SFRP1 to 5) have been found in mammalian cells. These secreted proteins typically act as antagonists to Wnt signaling by directly binding and inhibiting Wnt proteins, or by binding Frizzled to block Wnt protein interaction with the receptor (3). The various SFRPs bind and regulate Wnt proteins differentially; these proteins also display distinct expression patterns as they play important roles in regulating development (4-7). SFRP proteins appear to act as tumor suppressors, with loss of expression or function correlating with many invasive forms of cancer. Deletion of the corresponding SFRP1 gene and promoter hypermethylation leading to gene silencing has been reported in a number of cancers. Abnormal expression of SRFP1 and other Wnt signaling proteins is associated with some cases of retinitis pigmentosa (reviewed in 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine kinase closely related to Akt (1). SGK is rapidly induced in response to a variety of stimuli, including serum, glucocorticoid, follicle stimulating hormone, osmotic shock, and mineralocorticoids. SGK activation can be accomplished via HGF PI3K-dependent pathways and by integrin-mediated PI3K-independent pathways (2,3). Induction and activation of SGK has been implicated in activating the modulation of anti-apoptotic and cell cycle regulation (4-6). SGK also plays an important role in activating certain potassium, sodium, and chloride channels, suggesting its involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion (2). SGK is negatively regulated by ubiquitination and proteasome degradation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine kinase closely related to Akt (1). SGK is rapidly induced in response to a variety of stimuli, including serum, glucocorticoid, follicle stimulating hormone, osmotic shock, and mineralocorticoids. SGK activation can be accomplished via HGF PI3K-dependent pathways and by integrin-mediated PI3K-independent pathways (2,3). Induction and activation of SGK has been implicated in activating the modulation of anti-apoptotic and cell cycle regulation (4-6). SGK also plays an important role in activating certain potassium, sodium, and chloride channels, suggesting its involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion (2). SGK is negatively regulated by ubiquitination and proteasome degradation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine kinase closely related to Akt (1). SGK is rapidly induced in response to a variety of stimuli, including serum, glucocorticoid, follicle stimulating hormone, osmotic shock, and mineralocorticoids. SGK activation can be accomplished via HGF PI3K-dependent pathways and by integrin-mediated PI3K-independent pathways (2,3). Induction and activation of SGK has been implicated in activating the modulation of anti-apoptotic and cell cycle regulation (4-6). SGK also plays an important role in activating certain potassium, sodium, and chloride channels, suggesting its involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion (2). SGK is negatively regulated by ubiquitination and proteasome degradation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine kinase closely related to Akt (1). SGK is rapidly induced in response to a variety of stimuli, including serum, glucocorticoid, follicle stimulating hormone, osmotic shock, and mineralocorticoids. SGK activation can be accomplished via HGF PI3K-dependent pathways and by integrin-mediated PI3K-independent pathways (2,3). Induction and activation of SGK has been implicated in activating the modulation of anti-apoptotic and cell cycle regulation (4-6). SGK also plays an important role in activating certain potassium, sodium, and chloride channels, suggesting its involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion (2). SGK is negatively regulated by ubiquitination and proteasome degradation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: SH2D1A and SH2D1B are small, adaptor proteins with a single SH2-domain that play important signal transduction roles mediated by the signaling lymphocytic activation molecule (SLAM) family receptors (1). SH2D1A (also called SAP or SLAM-associated protein) is frequently mutated in patients with X-linked lymphoproliferative disease (Duncan’s disease), which is characterized by extreme susceptibility to Epstein-Barr virus; approximately 50 different SH2D1A mutations have been reported to date (2-4). The single SH2D1B gene in humans (also called EAT-2 or Ewing's sarcoma's/FLI1-activated transcript 2) is present as a pair of duplicated EAT-2A and EAT-2B genes with identical genomic organization in mouse and rat (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: SH2D1A and SH2D1B are small, adaptor proteins with a single SH2-domain that play important signal transduction roles mediated by the signaling lymphocytic activation molecule (SLAM) family receptors (1). SH2D1A (also called SAP or SLAM-associated protein) is frequently mutated in patients with X-linked lymphoproliferative disease (Duncan’s disease), which is characterized by extreme susceptibility to Epstein-Barr virus; approximately 50 different SH2D1A mutations have been reported to date (2-4). The single SH2D1B gene in humans (also called EAT-2 or Ewing's sarcoma's/FLI1-activated transcript 2) is present as a pair of duplicated EAT-2A and EAT-2B genes with identical genomic organization in mouse and rat (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The mTORC1 kinase complex is a critical regulator of cell growth (1,2). Its activity is modulated by enviromental factors such as energy levels, growth factors, and amino acids (3, 4). The GTPases RagA, RagB, RagC, and RagD mediate amino acid signaling to activate mTORC1 (1, 2). SH3BP4 (SH3 domain-binding protein 4) binds to the inactive Rag GTPase complex during amino acid starvation and prevents the association of Rag GTPase complex with mTORC1 resulting in the suppression of mTORC1 activation and cell growth (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The SHANK family proteins, also known as proline-rich synapse-associated proteins, consist of SHANK1, SHANK2, and SHANK3. SHANK proteins act as scaffolds at the neuronal post-synaptic density (PSD) (1), where they play a critical role in PSD assembly of excitatory synapses during development (2). While recruitment of SHANK proteins to the synapse is independent of their interaction with Homer (3), proper synaptic targeting of SHANK1 is mediated by interactions between its PDZ domain and PSD proteins (4). At the synapse, SHANK proteins interact with NMDA receptors and metabotropic glutamate receptor complexes (5). Research studies have proposed the involvement of SHANK proteins in autism and neurodegenerative diseases (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: SHank-Associated RH domain-interacting ProteIN (Sharpin), also known as SIPL1, is a highly conserved gene among many mammalian species and is ubiquitously expressed in various types of cells and tissues. Sharpin harbors multiple functional motifs including an amino terminal coiled-coil (CC) domain, which has been shown to mediate the interaction between sharpin and the scaffold protein shank (1). The other two domains, ubiquitin-like domain (UBL) and NPL4 zinc finger domain (NZF), facilitate ubiquitin-mediated protein recognition and degradation (2). Recent studies have shown that both UBL and NZF domains are essential for sharpin to exert its function in part through ubiquitin-mediated mechanisms (3-5). Although sharpin was initially identified as a scaffold protein within the postsynaptic density of neurons (1), recent studies have identified sharpin as a novel modulator of immune and inflammatory diseases. An emerging mechanistic model suggests that sharpin functions as an important adaptor component of the linear ubiquitin chain assembly complex (LUBAC) that modulates activation of the canonical NF-κB signaling pathway (3,4,6,7), thereby regulating cell survival and apoptosis, cytokine production, and development of lymphoid tissues. Indeed, mice with spontaneous mutations in the Sharpin gene develop chronic proliferative dermatitis that is characterized by eosinophilic inflammation of the skin and dysregulated development of lymphoid tissues (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: Hedgehog proteins (Hh) are secreted signaling proteins that play many roles during animal development. Aberrant Hh signaling activity can be associated with numerous birth defects and uncontrolled Hh pathway activation is linked to the development of several types of cancers (1-2). The three identified vertebrate Hh genes are Sonic (Shh), Indian (Ihh) and Desert (Dhh), all of which have distinct as well as overlapping roles (3-5). Hh proteins are synthesized as 45 kDa precursors that undergo auto-cleavage to generate a 19 kDa amino-terminal peptide (Hh-N) and a carboxy-terminal peptide (Hh-C). The amino-terminal peptide becomes covalently attached to a cholesterol molecule at its carboxy terminus and acetylated at its amino terminus. This doubly modified Hh-N peptide is released from cells and responsible for all known Hedgehog signaling activity (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Serine hydroxymethyltransferases 1 and 2 (SHMT1, SHMT2) are cytoplasmic and mitochondrial serine hydroxylmethyltransferases, respectively (1,2). They catalyze the conversion of serine to glycine with the transfer of β-carbon from serine to tetrahydrofolate (THF) to form 5, 10-methylene-THF (1, 2). Research studies indicate that SHMT1 hemizygosity is associated with higher risk of intestinal cancer in mice of a certain genetic background (3). Suppression of SHMT2 was shown to block cell proliferation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SHOC2 is a scaffolding protein that harbors multiple leucine-rich repeats in tandem and is an upstream positive regulator of growth factor-dependent MAPK/ERK signaling. Research studies have demonstrated that SHOC2 forms a complex with the catalytic subunit of the PP1 phosphatase and M-Ras, and this complex drives activation of Raf-ERK signaling in response to mitogenic growth factors (1). SHOC2 has also been shown to cross-talk with and activate the PI3K/Akt signaling axis through its interaction with the p110α catalytic subunit of PI3K (2). As a positive regulator of ERK and PI3K/Akt signaling cascades, SHOC2 has been implicated in the regulation of several oncogenic cellular processes such as cell motility, invasion, and metastasis (2). A mutation in SHOC2 that introduces an N-terminal myristoylation site, promotes aberrant membrane targeting of SHOC2, hyperactive MAPK/ERK signaling, and Noonan-like syndrome (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: SHP-1 (PTPN6) is a non-receptor protein tyrosine phosphatase that is expressed primarily in hematopoietic cells. The enzyme is composed of two SH2 domains, a tyrosine phosphatase catalytic domain, and a carboxy-terminal regulatory domain (1). SHP-1 removes phosphates from target proteins to downregulate several tyrosine kinase-regulated pathways. In hematopoietic cells, the amino-terminal SH2 domain of SHP-1 binds to tyrosine phosphorylated erythropoietin receptors (EpoR) to negatively regulate hematopoietic growth (2). Overexpression of SHP-1 in epithelial cells results in dephosphorylation of the Ros receptor tyrosine kinase and subsequent downregulation of Ros-dependent cell proliferation and transformation (3). Following ligand binding in myeloid cells, SHP-1 associates with the IL-3R β chain and downregulates IL-3-induced tyrosine phosphorylation and cell proliferation (4). Because SHP-1 downregulates various proliferation pathways, SHP-1 is considered a potential tumor suppressor and angiogenesis regulator (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: SHP-2 (PTPN11) is a ubiquitously expressed, nonreceptor protein tyrosine phosphatase (PTP). It participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrices in the control of cell growth, differentiation, migration, and death (1). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of several growth factor receptors and cytokines (2). In addition to its role in Gab1-mediated Erk activation, SHP-2 attenuates EGF-dependent PI3 kinase activation by dephosphorylating Gab1 at p85 binding sites (3). SHP-2 becomes phosphorylated at Tyr542 and Tyr580 in its carboxy-terminus in response to growth factor receptor activation (4). These phosphorylation events are thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (5). Mutations in the corresponding gene result in a pair of clinically similar disorders (Noonan syndrome and LEOPARD syndrome) that may result from abnormal MAPK regulation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Siglec-10 is a sialic acid-binding Ig-like lectin that has been shown to negatively regulate innate and adaptive immune system function (1). Siglec-10 is a type 1 transmembrane protein that has four extracellular Ig-like domains, a transmembrane region, and a cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motifs (ITIM) (2). Siglec-10 is expressed in dendritic cells (DCs), monocytes, B cells, NK cells, and T cells (2, 3). Siglec-10 interacts with CD24 to suppress immune responses to danger associated molecular patterns (DAMPs) by associating with the tyrosine phosphatase SHP-1, a negative regulator of nuclear factor-kappa B (NF-κB) (4). Siglec-10 has been shown to bind soluble CD52 leading to the impairment of phosphorylation of the T cell receptor–associated kinases Lck and Zap70 and T cell activation (3). It has been proposed that this mechanism of suppression could be involved in T cell homeostasis and the prevention of type I diabetes (3). Siglec-10 has also been identified as the leukocyte ligand for vascular adhesion protein-1 (VAP-1), which plays a key role in leukocyte trafficking (5). Lectin galactoside-binding soluble 3 binding protein (LGALS3BP), a tumor-associated immunomodulatory ligand, has also been shown to bind Siglec-10 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Sigma non-opioid intracellular receptor 1 (SIGMAR1) is an endoplasmic reticulum (ER) membrane chaperone that forms raft-like microdomains on the ER, where it interacts with mitochondria at the mitochondria-associated ER membrane domain (MAM). At MAM, SIGMAR1 maintains proper ER-mitochondrion Ca2+ signaling, regulates mitochondria function, and enhances cellular survival upon ER stress (1-4). When activated, SIGMAR1 translocates to ER and plasma membrane, where it interacts with a plethora of membrane proteins, including ion channels, neurotransmitter receptors, and kinases. SIGMAR1 also modulates a variety of neuronal functions, such as neuronal excitability, neuroplasticity, neuroprotection, and neurorestoration (5-7). SIGMAR1 binds to many anti-psychotic drugs and it is implicated in addiction, pain, neurodegenerative diseases, and depression (8-11). Recently, mutations in the SIGMAR1 gene have been reported to be associated with amyotrophic lateral sclerosis (12,13). Besides its important roles in central nervous system and peripheral nervous system, SIGMAR1 also enhances cancer cell migration and invasion (14,15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Sigma non-opioid intracellular receptor 1 (SIGMAR1) is an endoplasmic reticulum (ER) membrane chaperone that forms raft-like microdomains on the ER, where it interacts with mitochondria at the mitochondria-associated ER membrane domain (MAM). At MAM, SIGMAR1 maintains proper ER-mitochondrion Ca2+ signaling, regulates mitochondria function, and enhances cellular survival upon ER stress (1-4). When activated, SIGMAR1 translocates to ER and plasma membrane, where it interacts with a plethora of membrane proteins, including ion channels, neurotransmitter receptors, and kinases. SIGMAR1 also modulates a variety of neuronal functions, such as neuronal excitability, neuroplasticity, neuroprotection, and neurorestoration (5-7). SIGMAR1 binds to many anti-psychotic drugs and it is implicated in addiction, pain, neurodegenerative diseases, and depression (8-11). Recently, mutations in the SIGMAR1 gene have been reported to be associated with amyotrophic lateral sclerosis (12,13). Besides its important roles in central nervous system and peripheral nervous system, SIGMAR1 also enhances cancer cell migration and invasion (14,15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Salt-inducible kinase 1 (SIK1) was originally identified as a serine/threonine kinase from adrenocortical tissues of rats on a high salt diet (1). SIK1 is a SNF1/AMPK family kinase capable of autophosphorylation (1). SIK2 is an isoform of SIK1 and is specifically expressed in adipose tissues where it is induced during adipocyte differentiation (2). Studies suggest that SIK2 can phosphorylate human insulin receptor substrate (IRS-1) at Ser794. Along with evidence that SIK2 expression and activity are increased in white adipocytes of diabetic mice, this finding suggests a possible role for SIK2 in regulating insulin signaling in adipocytes and in the development of insulin resistance (2,3). Insulin triggers Akt2-mediated phosphorylation of SIK2 at Ser358 and the resultant kinase activation during post-fasting feeding (4). The activated SIK2 then induces the phosphorylation of Torc2 at Ser171 resulting in translocation of this transcriptional coactivator from the nucleus to cytoplasm where it is degraded through the ubiquitin pathway, leading to inhibition of gluconeogenic gene expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase that is a component of two different complexes. The mTOR complex 1 (mTORC1), a target of rapamycin, contains mTOR, GβL, and raptor. mTORC2, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTORC2 complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). mTORC2 has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4). In addition, phosphorylation of Sin1 at Thr86 by Akt/PKB was shown to regulate the activity of mTORC2 in adipocytes upon stimulation by growth factors (5).