Microsize antibodies for $99 | Learn More >>

Product listing: TFF1/pS2 (D2Y1J) Rabbit mAb, UniProt ID P04155 #15571 to TIGAR (D3F4A) Rabbit mAb, UniProt ID Q9NQ88 #14751

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The trefoil factor (TFF) family of proteins (TFF1/pS2, TFF2, and TFF3) are a group of highly conserved, secreted polypeptides that are expressed by mucus-secreting cells of the gastrointestinal tract. Within the gastrointestinal tract, TFFs display both common and distinct expression patterns (1). Collectively, the TFF family of proteins play a prominant role in the protection and repair of the mucous epithelia lining the gastrointestinal tract through their interactions with mucins (2). TFFs have been shown to regulate a number of cellular processes such as migration, apoptosis, and proliferation. In humans, dysregulated expression of TFFs has been observed in inflammatory bowel diseases as well as tumors of the breast, colon, lung, and stomach (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: TFIIB (also known as GTF2B, TF2B and general transcription factor IIB) is a ubiquitously expressed transcription factor that plays a central role in the assembly of the transcription pre-initiation complex through direct recruitment of RNA polymerase II (1,2). TFIIB functions as a bridge between promoter-bound TFIID and RNA polymerase II. In addition to interacting with promoter-bound TFIID and TFIIA, TFIIB makes extensive contacts with the core promoter via two independent DNA-binding modules. TFIIB may also be a target of transcriptional activator proteins that act to stimulate pre-initiation complex assembly.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Transglutaminase 2 (TGM2) is a calcium-dependent enzyme that cross-links both cytosolic and extracellular matrix proteins by catalyzing the formation of bonds between lysine and glutamine residues (1). This bifunctional enzyme also has intrinsic GTPase activity, and it has been suggested that regulation of the transamidase activity might be regulated through a G-protein coupled receptor-signaling pathway (2). In cross-linking peptides, TGM2 helps to regulate cytoskeletal structure, cell migration, apoptosis and cell-matrix adhesion. In addition, the enzyme plays an important role in wound healing and the immune response (3). TGM2 has exhibited kinase activity in vitro, with insulin-like growth factor-binding protein-3 (IGFBP-3) as one possible substrate (4). This widely expressed protein is localized to the cytosol and nucleus, but has also been isolated from the cell surface and extracellular matrix (reviewed in 5). Because of its interaction with a number of different substrates, and its role in the response to injury, TGM2 has been associated with the pathology of a number of human disorders. It has long been recognized as the major autoantigen in celiac disease (6); altered TGM2 expression or activity may be associated with Alzheimer disease, Huntington disease, arteriosclerosis, diabetes, and numerous forms of cancer (reviewed in 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Negative Elongation Factor (NELF) consists of four subunits: WHSC2 (NELF-A), COBRA-1 (NELF-B), TH1L (NELF-C/D), and NELF-E (1). NELF, together with DRB-sensitivity inducing factor (DSIF), inhibits RNA Polymerase II (RNAPII) elongation resulting in RNAPII promoter proximal pausing, where it waits additional signaling to resume transcription (2,3). The release of RNAPII from promoter proximal pausing is a critical regulatory point during transcription and is signaled by positive transcription elongation factor (p-TEF-b) phosphorylation of both NELF and the carboxy-terminal domain (CTD) within the largest subunit of RNAPII (3,4). WHSC2 is thought to connect the NELF complex to RNAPII machinery, while NELF-E contains an RNA binding motif that is necessary for NELF function (1,5,6). TH1L, together with COBRA-1, are integral subunits that bring WHSC2 and NELF-E together in the NELF complex (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: THEX1 (3’hExo) is a 3’ exonuclease that may play a role in the degradation of histone mRNA transcripts (1). A recently identified member of the DEDDh 3' exonuclease family, THEX1 binds the conserved stem-loop structure found at the 3’ end of mRNA in vitro (2). The binding of THEX1 to mRNA requires the presence of a terminal ACCCA sequence and is enhanced by the concurrent binding of stem-loop binding protein (SLBP). Cleavage of histone mRNA by THEX1 exonuclease may help produce the rapid turnover of histone mRNA transcripts associated with the completion of DNA replication (3). Additional evidence suggests that THEX1 may be responsible for excising the remaining few 3’ nucleotides following cleavage by a different enzyme (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: THEX1 (3’hExo) is a 3’ exonuclease that may play a role in the degradation of histone mRNA transcripts (1). A recently identified member of the DEDDh 3' exonuclease family, THEX1 binds the conserved stem-loop structure found at the 3’ end of mRNA in vitro (2). The binding of THEX1 to mRNA requires the presence of a terminal ACCCA sequence and is enhanced by the concurrent binding of stem-loop binding protein (SLBP). Cleavage of histone mRNA by THEX1 exonuclease may help produce the rapid turnover of histone mRNA transcripts associated with the completion of DNA replication (3). Additional evidence suggests that THEX1 may be responsible for excising the remaining few 3’ nucleotides following cleavage by a different enzyme (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Thioredoxin is a small redox protein found in many eukaryotes and prokaryotes. A pair of cysteines within a highly conserved, active site sequence can be oxidized to form a disulfide bond that is then reduced by thioredoxin reductase (1). Multiple forms of thioredoxin have been identified, including cytosolic thioredoxin 1 (TRX1) and mitochondrial thioredoxin 2 (TRX2). Thioredoxin participates in many cellular processes including redox signaling, response to oxidative stress, and protein reduction (1). A potential role of thioredoxin in human disorders such as cancer, aging, and heart disease is currently under investigation (2). Thioredoxin can play a key role in cancer progression, because it acts as a negative regulator of the proapoptotic kinase ASK1 (3). Changes in thioredoxin expression have been associated with meningococcal septic shock and acute lung injury (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Thioredoxin is a small redox protein found in many eukaryotes and prokaryotes. A pair of cysteines within a highly conserved, active site sequence can be oxidized to form a disulfide bond that is then reduced by thioredoxin reductase (1). Multiple forms of thioredoxin have been identified, including cytosolic thioredoxin 1 (TRX1) and mitochondrial thioredoxin 2 (TRX2). Thioredoxin participates in many cellular processes including redox signaling, response to oxidative stress, and protein reduction (1). A potential role of thioredoxin in human disorders such as cancer, aging, and heart disease is currently under investigation (2). Thioredoxin can play a key role in cancer progression, because it acts as a negative regulator of the proapoptotic kinase ASK1 (3). Changes in thioredoxin expression have been associated with meningococcal septic shock and acute lung injury (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: mRNA export is a process that is tightly coupled to mRNA splicing (1-4). Splicing and packaging of mRNAs in the form of an mRNA-protein complex (mRNP) leads to the recruitment of the mRNA export adaptor THOC4/ALY, via its interaction with the splicing factor UAP56, forming a large complex termed the transcription-export complex (TREX) (1,2,5). THOC4/ALY then directly interacts with NXF1/TAP, a part of the heterodimer that targets the mRNP to the nuclear pore complex, resulting in the shuttling of mRNP out of the nucleus and into the cytoplasm (1-3,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: The transcription factor Th-inducing POZ/Krüppel-like factor (ThPOK, ZBTB7B, cKROX, ZFP67) is a transcriptional repressor belonging to the POK/ZBTB family of lymphoid cell development regulators (1). ThPOK is best known as a signature CD4+ Th cell transcription factor that is upregulated during the differentiation of CD4+ Th but not CD8+ cytotoxic T cells (1). Expression of ThPOK in developing T cells represses expression of CD8 and cytotoxic T cell effector genes, and indirectly promotes expression of CD4 by antagonizing RUNX-mediated CD4 repression (2-4). ThPOK expression has also been observed in NKT cells and γδ T cells (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The adhesive glycoprotein thrombospondin-1 (THBS1, TSP1) localizes to the extracellular matrix (ECM) and mediates interactions between cells and the ECM and among cells. Thrombospondin-1 is a multi-domain, glycosylated protein that interacts with a wide variety of extracellular targets, including matrix metalloproteinases (MMPs), collagens, cell receptors, growth factors, and cytokines (1). The protein structure of THBS1 includes an amino-terminal laminin G-like domain, a von Willebrand factor-binding domain, and multiple thrombospondin (TSP) repeated sequences designated as type I, type II, or type III repeats. Each thrombospondin domain interacts with a distinct type of cell surface ligands or protein targets. The amino-terminal domain interacts with aggrecan, heparin, and integrin proteins. Type I TSP repeats interact with MMPs and CD36, while carboxy-terminal repeats bind the thrombospondin receptor CD47 (1). Through these interactions, THBS1 exerts diverse effects on different signaling pathways, such as VEGF receptor/NO signaling, TGFβ signaling, and the NF-κB pathway (2-5). Thrombospondin-1 is an important regulator of many biological processes, including cell adhesion/migration, apoptosis, angiogenesis, inflammation, vascular function, and cancer development (2-5). The activity of thrombospondin-1 is mainly regulated by extracellular proteases. The metalloproteinase ADAMTS1 cleaves thrombospondin, resulting in the release of peptides with anti-angiogenic properties. Elastase and plasmin proteases degrade the THBS1 protein and down regulate its activity (6). As THBS1 is an important protein inhibitor of angiogenesis, the development of thrombospondin-based compounds and their use in therapeutic studies may provide a beneficial approach to the treatment of cancer (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The Thy1/CD90 cell surface antigen is a GPI-anchored, developmentally regulated protein involved in signaling cascades that mediate neurite outgrowth, T cell activation, tumor suppression, apoptosis, and fibrosis (1). Thy1/CD90 is highly expressed on the surface of adult neurons and is thought to play a role in modulating adhesive and migratory events, such as neurite extension (1,2). Decreased Thy1/CD90 mRNA and protein expression is associated with the development of epithelial ovarian cancer, suggesting a role as a putative tumor suppressor gene of human ovarian cancer (3,4). Research studies indicate that Thy1/CD90 knockout mice have impaired cutaneous immune responses and abnormal retinal development (5,6). Thy1/CD90 is epigenetically regulated or deregulated in some disease states, such as pulmonary fibrosis. The potentially reversible hypermethylation of the Thy1/CD90 promoter offers the possibility of novel therapeutic options in this disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Thymidine kinases play a critical role in generating the DNA synthetic precursor deoxythymidine triphosphate (dTTP) by catalyzing the phosphotransfer of phosphate from ATP to deoxythymidine (dT) and thymidine (T) in the cell. There are two known thymidine kinases, cytoplasmic thymidine kinase 1 (TK1) and mitochondrial thymidine kinase 2 (TK2) (1,2). Unlike TK2, which is not modulated by the cell cycle, TK1 expression and activity is regulated in a cell cycle-dependent manner, accumulating during G1-phase to peak levels in S-phase before being degraded prior to cell division (3,4). Stability, but not activity, may be regulated via phosphorylation of TK1 at Ser13 by Cdc2 and/or Cdk2, but the precise mode of regulation remains elusive (5). These observations indicate that TK1 might be a useful marker of cell proliferation; however, recent studies have shown that TK1 plays a more significant role in the DNA damage response (6). Genotoxic stress promotes increased TK1 expression and kinase activity resulting in reduced cellular apoptosis and enhanced DNA repair efficiency (6). More importantly, numerous studies show that TK1 expression and activity are upregulated during neoplasia and disease progression in humans, and increased serum levels of TK1 correlate with poor prognosis and decreased survival in patients with various types of advanced tumors (7-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Thymidine phosphorylase (TP) is a platelet-derived endothelial cell growth factor (PD-ECGF) that catalyzes the formation of thymine and 2-deoxy-D-ribose-1-phosphate from thymidine and orthophosphate (1). This intracellular enzyme is capable of both promoting angiogenesis and inhibiting apoptosis. Thymidine phosphorylase catalytic activity is required for its angiogenic function (2,3). Increased expression of TP/PD-ECGF is seen in a wide variety of different solid tumors and inflammatory diseases and is often associated with poor prognosis (4,5). Alternatively, TP can activate fluorouracil derivative (DFUR) prodrugs and increase the antitumor activity of the related treatment (1,5). The use of thymidine phosphorylase as a cancer therapeutic target has been studied extensively, with emphasis on either inhibiting TP enzymatic activity or increasing enzyme induction with concomitant DFUR treatment (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Thyroid Transcription Factor 1 (TTF-1, also known as NKX2-1), a member of the NKX homeobox transcription factor family, was initially discovered in the FRTL-5 rat thyroid cell line (1). Subsequent studies have shown that TTF-1 plays an important role in differentiation and morphogenesis of the developing thyroid, lung, and ventral forebrain (2). TTF-1 controls the expression of several genes, some of which are tissue specific, such as: thyroglobulin, thyroperoxidase, and the thyrotropin receptor in the thyroid; and surfactant proteins and clara cell secretory protein in the lung (2,3). Investigators have found that TTF-1 is expressed in malignant tumors of the thyroid and lung, and it is commonly used as a marker for both primary and malignant lung cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: T-cell intracellular antibody 1 (TIA-1) is a member of the RNA-recognition motif (RRM) family of RNA-binding proteins that was originally found to induce DNA fragmentation in digitonin-permeabilized thymocytes (1). TIA-1 protein has about 80% identity to the related TIAR protein, both of which possess three amino-terminal RRM domains and a glutamine-rich carboxyl terminus (1,2). Alternative splicing is responsible for generating at least two isoforms of TIA-1 and TIAR (3,4). Several research studies indicate that TIA-1 and TIAR play a role in apoptosis, cellular stress, and inflammation. Importantly, TIA-1 and TIAR translocate from the nucleus to stress granules in response to a variety of environmental stresses (5-8). Stress granules function as sites of translational repression in response to potentially damaging conditions. mRNA transcripts targeted by TIA-1 and TIAR include TNF-α, COX-2, cytochrome c, GADD45α, and HIF-1α (8-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TIAR is a member of the RNA-recognition motif (RRM) family of RNA-binding proteins (1,2). It functions as a translational repressor under conditions of cellular damage (3,4). In response to cellular stress, TIAR associates with eIF1, eIF3, and the 40S ribosomal subunit and forms noncanonical preinitiation complexes that are translationally inactive (3,4). TIAR then aggregates with its family member TIA1 and facilitates the accumulation of the translationally inactive preinitiation complexes into discrete cytoplasmic foci called stress granules. The two major isoforms of TIAR are the products of alternative mRNA splicing (5,6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TIAR is a member of the RNA-recognition motif (RRM) family of RNA-binding proteins (1,2). It functions as a translational repressor under conditions of cellular damage (3,4). In response to cellular stress, TIAR associates with eIF1, eIF3, and the 40S ribosomal subunit and forms noncanonical preinitiation complexes that are translationally inactive (3,4). TIAR then aggregates with its family member TIA1 and facilitates the accumulation of the translationally inactive preinitiation complexes into discrete cytoplasmic foci called stress granules. The two major isoforms of TIAR are the products of alternative mRNA splicing (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Human Tid-1 is a human orthologue of the Drosophila tumor suppressor lethal (2) tumorous imaginal discs, l (2) tid and is a member of the DnaJ family of proteins that serve as co-chaperones to Hsp70 proteins (1). These proteins are characterized by a J domain, a highly conserved tetrahelical domain that binds to Hsp70 chaperones and activates their ATPase activity. Hsp70 and their associated chaperones mediate a variety of activities including the folding of newly synthesized polypeptides, the translocation of proteins across membranes and assembly of multimeric protein complexes. Two alternatively spliced variants exist for human Tid-1 ,designated hTID-1s and hTID-1L, both which contain the J domain, localize to the mitochondrial matrix, and co-immunoprecipitate with Hsp70. Expression of Tid-1L increases apoptosis induced by the DNA damaging agent mitomycin c (MMC) and by TNF-alpha, and that activity is dependent on its J domain. In contrast, expression of Tid-1S reduces apoptosis by these agents. Tid-1 orthologues are also found in mouse (mTid-1) and rat (rTid-1) (2,3). The mouse orthologue was originally identified though its interaction with p120 GTPase-activating protein (GAP), raising the possiblity that Tid-1 helps regulates the confirmation, activity, or subcellular localization of GAP (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TIE1 belongs to the Tie family of receptor tyrosine kinases. TIE1 is structurally similar to its homolog TIE2, but differs from the latter in that it does not have a known ligand and is thus considered an orphan receptor (1). A key function of TIE1 is to modulate TIE2 signaling, via heterodimerization with TIE2 at the cell surface (2). The effects of TIE1-TIE2 interaction are context-dependent; heterodimerization can either promote or inhibit downstream TIE2 signaling depending on localized TIE2 levels (3-6). Research studies have shown TIE1 to be implicated in angiogenesis, vascular maturation, tissue remodeling, and inflammation. Increased expression of TIE1 has also been associated with cancer stemness and atherosclerosis formation (7, 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Tie2/Tek is a receptor tyrosine kinase (RTK) expressed almost exclusively on endothelial cells. It is critical for vasculogenesis and could be important for maintaining endothelial cell survival and integrity in adult blood vessels as well as tumor angiogenesis (1-3). A family of ligands known as the angiopoietins binds to Tie2. Interestingly, these ligands appear to have opposing actions; Angiopoietin-1 (Ang1) and Angiopoietin-4 (Ang4) stimulate tyrosine phosphorylation of Tie2; Angiopoietin-2 (Ang2) and Angiopoietin-3 (Ang3) can inhibit this phosphorylation (4,5). Downstream signaling components, including Grb2, Grb7, Grb14, SHP-2, the p85 subunit of phosphatidylinositol 3-kinase, and p56/Dok-2 interact with Tie2 in a phosphotyrosine-dependent manner through their SH2 or PTB domains (6,7). Tyr992 is located on the putative activation loop of Tie2 and is a major autophosphorylation site (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Tie2/Tek is a receptor tyrosine kinase (RTK) expressed almost exclusively on endothelial cells. It is critical for vasculogenesis and could be important for maintaining endothelial cell survival and integrity in adult blood vessels as well as tumor angiogenesis (1-3). A family of ligands known as the angiopoietins binds to Tie2. Interestingly, these ligands appear to have opposing actions; Angiopoietin-1 (Ang1) and Angiopoietin-4 (Ang4) stimulate tyrosine phosphorylation of Tie2; Angiopoietin-2 (Ang2) and Angiopoietin-3 (Ang3) can inhibit this phosphorylation (4,5). Downstream signaling components, including Grb2, Grb7, Grb14, SHP-2, the p85 subunit of phosphatidylinositol 3-kinase, and p56/Dok-2 interact with Tie2 in a phosphotyrosine-dependent manner through their SH2 or PTB domains (6,7). Tyr992 is located on the putative activation loop of Tie2 and is a major autophosphorylation site (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: TIF1β is a member of the TIF1 (transcriptional intermediary factor 1) family, a group of transcriptional regulators that play key roles in development and differentiation. Members of this family are characterized by the presence of two conserved motifs – an N-terminal RING-B box-coiled-coil motif and a C-terminal PHD finger and bromodomain unit (1,2). TIF1β is a corepressor for KRAB (Kruppel associated box) domain containing zinc finger proteins. The KRAB domain containing zinc finger proteins are a large group of transcription factors that are vertebrate-specific, varied in their expression patterns between species, and thought to regulate gene transcription programs that control speciation (3,4).TIF1β has been shown to be essential for early embryonic development and spermatogenesis (6,5). It functions to either activate or repress transcription in response to environmental or developmental signals by chromatin remodeling and histone modification. The recruitment and association of TIF1β with heterochromatin protein (HP1) is essential for transcriptional repression, and for progression through differentiation of F9 embryonic carcinoma cells (6,7). TIF1β also plays a role in the DNA damage response. Phosphorylation of TIF1β on Ser842 occurs in an ATM-dependent manner in response to genotoxic stress and is thought to be essential for chromatin relaxation, which is in turn required for the DNA damage response (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: TIF1β is a member of the TIF1 (transcriptional intermediary factor 1) family, a group of transcriptional regulators that play key roles in development and differentiation. Members of this family are characterized by the presence of two conserved motifs – an N-terminal RING-B box-coiled-coil motif and a C-terminal PHD finger and bromodomain unit (1,2). TIF1β is a corepressor for KRAB (Kruppel associated box) domain containing zinc finger proteins. The KRAB domain containing zinc finger proteins are a large group of transcription factors that are vertebrate-specific, varied in their expression patterns between species, and thought to regulate gene transcription programs that control speciation (3,4).TIF1β has been shown to be essential for early embryonic development and spermatogenesis (6,5). It functions to either activate or repress transcription in response to environmental or developmental signals by chromatin remodeling and histone modification. The recruitment and association of TIF1β with heterochromatin protein (HP1) is essential for transcriptional repression, and for progression through differentiation of F9 embryonic carcinoma cells (6,7). TIF1β also plays a role in the DNA damage response. Phosphorylation of TIF1β on Ser842 occurs in an ATM-dependent manner in response to genotoxic stress and is thought to be essential for chromatin relaxation, which is in turn required for the DNA damage response (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The p53 tumor suppressor protein regulates the cellular response to multiple stresses, including DNA damage and oxidative stress. Activation of p53 can lead to cell cycle arrest and DNA repair, or apoptosis (1). Activated p53 transcription factor regulates the expression of multiple genes that regulate cell metabolism and the cell cycle. One p53-inducible gene is C12orf5, which encodes for a fructose-2,6-bisphosphatase known as TIGAR. TP53-inducible glycolysis and apoptosis regulator (TIGAR) protects cells from oxidative stress as it negatively regulates glycolysis and reduces the production of reactive oxygen species (ROS) in cells (2,3). Research studies demonstrate that knockdown of TIGAR expression induces autophagy and apoptosis (4,5), and its expression protects cells from ROS-related cell death (6,7). Additional studies show that TIGAR promotes cell cycle arrest and supports dephosphorylation of the retinoblastoma (Rb) protein (8).