20% off purchase of 3 or more products* | Learn More >>

Product listing: Caspr2 Antibody, UniProt ID Q9UHC6 #3731 to cdc25A Antibody, UniProt ID P30304 #3652

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Contactin-associated protein 2 (Caspr2) is a type I transmembrane protein and member of the neurexin superfamily that mediates nervous system cell-cell interactions through the Neurexin IV-Caspr-Paranodin (NCP) complex (1). A multiprotein complex consisting of TAG-1, Caspr2, K+ channel, PSD95 and protein 4.1B mediates the molecular interactions at the juxtaparanodal region of myelinated axons, with homophilic TAG-1 interactions mediating the binding of this complex to glia (2,3).Caspr2 protein localizes to juxtaparanodal regions of myelinated axons where it forms a cis-complex with the immunoglobulin-like cell adhesion molecule TAG-1. Caspr2 also binds to Shaker K+ channels Kv1.1, Kv1.2, and their Kvβ2 subunit. A PDZ domain at the Caspr2 carboxy terminus mediates the Caspr2-K+ channel association. Caspr2 is required for proper K+ channel localization, as Caspr2 deletion causes the redistribution of channels along the internodes (1-3). Furthermore, Caspr2 binds to protein 4.1B and connects the protein complex to the axonal cytoskeleton (4). Mutations in the Caspr2 gene have been linked to focal epilepsy, cortical dysplasia and Gilles de la Tourette syndrome (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Catenin δ-1 (p120 catenin) has an amino-terminal coiled-coil domain followed by a regulatory domain containing multiple phosphorylation sites and a central Armadillo repeat domain of ten linked 42-amino acid repeats. The carboxy-terminal tail has no known function (1). Catenin δ-1 fulfills critical roles in the regulation of cell-cell adhesion as it regulates E-cadherin turnover at the cell surface to determine the level of E-cadherin available for cell-cell adhesion (2). Catenin δ-1 has both positive and negative effects on cadherin-mediated adhesion (3). Actin dynamics are also regulated by catenin δ-1, which modulates RhoA, Rac, and cdc42 proteins (1). Analogous to β-catenin, catenin δ-1 translocates to the nucleus, although its role at this location is unclear. Many studies show that catenin δ-1 is expressed irregularly or is absent in various types of tumor cells, suggesting that catenin δ-1 may function as a tumor suppressor (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Cathepsin B (CSTB), part of the papain family of proteases, is a widely expressed lysosomal cysteine endopeptidase (1,2). Cathepsin B is produced from a larger precursor form, pro-cathepsin B, which runs at approximately 44 kDa on SDS-PAGE, and is proteolytically processed and glycosylated to form a mature two-chain protein containing a heavy chain (running at 27 and 24 kDa) and a light chain (5 kDa). High levels of cathepsin B are found in macrophages and osteoclasts, as well as various types of cancer cells, including lung, colon, prostate, breast, and stomach. In addition, expression of cathepsin B has been associated with multiple sclerosis (3), rheumatoid arthritis (4), and pancreatitis (5). While generally localized to lysosomes, in cancer alterations can lead to its secretion (6). Its role in tumor progression is thought to involve promotion of basement membrane degradation, invasion and metastasis (7,8). Expression can correlate with poor prognosis for a variety of forms of cancer (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Cathepsin B (CSTB), part of the papain family of proteases, is a widely expressed lysosomal cysteine endopeptidase (1,2). Cathepsin B is produced from a larger precursor form, pro-cathepsin B, which runs at approximately 44 kDa on SDS-PAGE, and is proteolytically processed and glycosylated to form a mature two-chain protein containing a heavy chain (running at 27 and 24 kDa) and a light chain (5 kDa). High levels of cathepsin B are found in macrophages and osteoclasts, as well as various types of cancer cells, including lung, colon, prostate, breast, and stomach. In addition, expression of cathepsin B has been associated with multiple sclerosis (3), rheumatoid arthritis (4), and pancreatitis (5). While generally localized to lysosomes, in cancer alterations can lead to its secretion (6). Its role in tumor progression is thought to involve promotion of basement membrane degradation, invasion and metastasis (7,8). Expression can correlate with poor prognosis for a variety of forms of cancer (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: Cathepsin D is a ubiquitously expressed lysosomal aspartyl protease involved in the normal degradation of proteins (1). It is synthesized as an inactive 43 kDa preprocathepsin D that is cleaved and glycosylated to form a 46 kDa procathepsin D and then further cleaved to produce 28 kDa and 15 kDa subunits (heavy and light chains, respectively) (2). Cathepsin D may also be secreted into the cytosol during apoptosis and contribute to cleavage of substrates implicated in the apoptotic pathway (3). Numerous studies have suggested that cathepsin D plays a role in neuronal degradation and malignant transformation, particularily in breast cancer (4-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Mouse, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The 21-24 kDa integral proteins, caveolins, are the principal structural components of the cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae. Three members of the caveolin family (caveolin-1, -2, and -3) have been identified with different tissue distributions. Caveolins form hetero- and homo-oligomers that interact with cholesterol and other lipids (1). Caveolins are involved in diverse biological functions, including vesicular trafficking, cholesterol homeostasis, cell adhesion, and apoptosis, and are also implicated in neurodegenerative disease (2). Caveolins interact with multiple signaling molecules such as Gα subunit, tyrosine kinase receptors, PKCs, Src family tyrosine kinases, and eNOS (1,2). It is believed that caveolins serve as scaffolding proteins for the integration of signal transduction. Phosphorylation at Tyr14 is essential for caveolin association with SH2 or PTB domain-containing adaptor proteins such as GRB7 (3-5). Phosphorylation at Ser80 regulates caveolin binding to the ER membrane and entry into the secretory pathway (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. This histone methyl-transferase activity requires the Ezh2, Eed, and Suz12 subunits of the complex (5). Histone H3 methylation at Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (6). CBX4 is a component of the PRC1 complex, which together with Ring1 strongly enhances the E3 ubiquitin ligase activity of the Ring2 catalytic subunit (7,8). CBX4 itself is a SUMO E3 ligase, and its function influences EMT, DNA damage response, tumor angiogenesis, and self-renewal (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CCN3, also named NOV (Nephroblastoma overexressed), belongs to the CCN (Cyr61, Ctgf, NOV) family of proteins. It is a cystine-rich secretory protein that associates with components of the extracellular matrix. Like other CCN family members, CCN3 is capable of mediating diverse biological functions through its four distinct domains, which enable binding to numerous protein partners (1-5).CCN3 modulates bone turnover through various mechanisms and is implicated in the progression of primary bone cancers such as osteosarcoma and chondrosarcoma (6-8). Research has shown that CCN3 is also involved in the bone metastasis of melanoma, breast cancer, and prostate cancers (9-11). Recently, CCN3 was reported to play an important role in stem cell renewal (12). CCN3 is normally expressed in both embryonic and adult tissues (13,14). The activity of CCN3 is influenced by post translational modifications and proteolytic cleavage (15,16).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CCT2 is one of eight largely unrelated subunit proteins found in a protein chaperone complex known as the chaperonin-containing TCP-1 (CCT) or TRiC complex. The CCT complex is an abundanct cytoslic component that is credited with helping newly synthesized polypeptides adopt the correct conformation (1). Proteins that fold and assemble with the help of CCT include the cytoskeletal proteins actin and tubulin as well as up to 15% of newly synthesized eukaryotic proteins (2). CCT2 is the β-subunit of the chaperone complex and is one of several CCT proteins that exhibit increased expression in response to stress. This implies that the CCT complex helps cells recover from protein damage by assisting in protein folding and assembly (3). CCT subunit levels also change throughout the cell cycle, with lower proteins levels (and reduced chaperone activity) found during induced cell cycle arrest during at M phase (4). Each CCT subunit is thought to perform a specific function during protein folding and assembly (5); CCT2 exhibits both actin and tubulin binding activities (6,3) but the exact molecular function on this subunit remains uncertain.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CTP:phosphocholine cytidylyltransferase (CCT) is a critical enzyme that regulates the CDP-choline pathway for the biosynthesis of phosphatidylcholine. Three distinct CCT isoforms are found in mammals, including CCTα, CCTβ2, and CCTβ3 (1,2). CCTα is the major isoform that is expressed in most tissues (3). CCTα is essential in the synthesis and secretion of surfactant by alveolar epithelial cells and is important in maintaining the phosphatidylcholine level that regulates lipoprotein assembly and secretion in hepatocytes (4,5). CCTα is a major component in membrane biogenesis during cytokine secretion by stimulated macrophages (6). Monoubiquitination of CCTα prevents it from entering the nucleus and leads to its degradation by lysosome (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: CD105/Endoglin is an auxiliary receptor for the TGF-β receptor complex, functioning in related signaling pathways (1,2). CD105/Endoglin is a transmembrane protein that exists as a disulfide-linked homodimer. It is mainly expressed in vascular and connective tissues and in endothelial and stromal cells. Upregulated CD105/endoglin expression has been reported during wound healing and tumor vascularization, and in inflammatory tissues and developing embryos (1-4). Mutations inCD105/endoglin have been found to be a causal factor of hereditary hemorrhagic telangiectasia (HHT), a disease characterized by malformation of vascular structure (5,6). The importance of this protein for normal and tumor vascular function makes it a good marker for endothelial cell proliferation as well as a potential therapeutic target in cancer (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD109 is a glycosylphosphatidylinositol (GPI)-linked glycoprotein that belongs to the alpha2-macroglobulin family of thioester containing proteins (1). CD109 is associated with TGF-beta receptor I (TbRI) and inhibits TGF-beta signaling (2,3). Cleavage of CD109 at its Furin cleavage site results in the release of its large amino-terminal domain, which then binds to the TGF-beta receptor I to inhibit TGF-beta signaling (4-7). CD109 is expressed on a subset of CD34+ bone marrow cells and mesenchymal stem cells, activated platelets, activated T-cells, endothelial cells, and a wide variety of tumors (8-10). Elevated CD109 expression has been considered a diagnostic/prognostic marker for several types of cancers (11-14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD151 (PETA-3, SFA-1) is a member of the evolutionarily conserved tetraspanin family of multipass glycoproteins (TM4SF), highlighted by four transmembrane domains, two extracellular loops, and N/C-termini that reside within the cytoplasm. Identified as the first member of the tetraspanin family to be implicated in tumorigenesis, research studies have demonstrated that CD151 participates in tumor neovascularization (1), tumor cell cell invasion (2), and cell adhesion (3). Furthermore, a positive correlation exists between CD151 expression levels and poor prognosis for tumors of the lung (4), kidney (5), and prostate (6). CD151 is localized predominantly to the plasma membrane and research studies have demonstrated that CD151 exerts its pro-tumorigenic effects, in part, through the modulation of laminin-binding integrins (7-9) and oncogenic receptor tyrosine kinases, such as c-Met (10,11) and EGFR (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: B-lymphocyte antigen CD20 (also known as MS4A1; Membrane-spanning 4-domains subfamily A member 1) is a cell surface phosphoprotein involved in the regulation of B cell activation and proliferation (1,2). It is commonly used as a marker to identify B cells and is expressed throughout B cell development, up until their differentiation into plasma cells. CD20 has no known ligand, and its expression and function are largely conserved between human and mouse (1-3). Evidence suggests that CD20 is necessary for store operated calcium (SOC) entry, which leads to elevated cytoplasmic calcium levels required for B cell activation (4-5). Anti-CD20 antibody immunotherapy depletes B cells by activation of the innate monocytic network and is a common treatment for B cell lymphomas, leukemias, and autoimmune diseases (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD248, also known as Endosialin and TEM1, is a stromal cell marker expressed on activated mesenchymal cells including fibroblasts and pericytes. Not normally detectable in most adult tissues, it is highly expressed in lymphoid tissues during development, and in disease states where increased stromal cell proliferation and migration are evident (1-3). CD248 is known to be upregulated in breast cancer, brain tumors (4-6), and other malignancies including sarcoma (12), and it has been implicated in sprouting angiogenesis and vasculogenesis (7). It is thought that the CD248 gene is upregulated in response to hypoxic conditions in the tumor environment through HIF2 activation (8). Interestingly, CD248 is found to be highly expressed in activated fibroblasts. In liver fibrosis for example, CD248 marks the Hepatic Stellate Cells, the activated cells responsible for matrix production (9,10). In kidney fibrosis, CD248 marks the key effector cells within the fibrotic stroma including pericytes, myofibroblasts, and stromal fibroblasts (11), and in Idiopathic Pulmonary Fibrosis, CD248 may be a marker for severity of disease (12). CD248 has become a target of interest for pharmaceutical intervention in a wide scope of diseases (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: CD2AP is a scaffolding protein that is thought to link membrane proteins to the cytoskeleton (1-3). It plays a role in formation of tight junctions in specialized cell types such as the slit diaphragm in the kidney glomerulus (4). CD2AP is also involved in the immunological synapse between CD2 expressing T cells and antigen presenting cells (5). It has been shown that interaction between CD2AP and other cytoskeletal proteins may regulate the endocytosis of EGFR (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CD2AP is a scaffolding protein that is thought to link membrane proteins to the cytoskeleton (1-3). It plays a role in formation of tight junctions in specialized cell types such as the slit diaphragm in the kidney glomerulus (4). CD2AP is also involved in the immunological synapse between CD2 expressing T cells and antigen presenting cells (5). It has been shown that interaction between CD2AP and other cytoskeletal proteins may regulate the endocytosis of EGFR (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD33, a type I transmembrane protein, is a sialic acid-binding Ig-like lectin (Siglec-3) of the Ig superfamily, and human CD33 binds preferentially to alpha-2, 6-linked sialic acid. Upon binding to its ligands CD33 transduces an inhibitory signaling through the immunoreceptor tyrosine-based inhibitory motif (ITIM) in its intracellular domain, inhibiting cellular function such as phagocytosis. In addition, CD33 is also involved in other processes, such as adhesion (1-3). Due to its exclusive expression on hematopoietic cells, particularly the myeloid lineage and their progenitors, CD33 has been actively pursued as a therapeutic target against acute myeloid leukemia (AML) (4,5). CD33 may also be involved in Alzheimer’s Disease (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Cyclic ADP-ribose hydrolase 1 (CD38) is a transmembrane protein involved in several important biological processes, including immune response, insulin secretion, and social behavior. Originally described as a glycosylated immune cell surface marker, additional research determined that CD38 is a multifunctional enzyme that catalyzes the synthesis and hydrolysis of cyclic ADP ribose (cADPR) from NAD (1,2). Under acidic conditions, CD38 also catalyzes the synthesis of nicotinic acid adenine dinucleotide phosphate (NAADP) from NADP+. Both cADPR and NAADP act as calcium ion mobilizing messengers that target different intracellular Ca2+ stores (3-6). Since CD38 is the primary mammalian NAD+ glycohydrolase responsible for NAD+ metabolism, CD38 may be a valuable therapeutic target for treatment of metabolic diseases regulated by NAD+-dependent pathways (7,8). CD38 has also been considered a possible therapeutic target for antibody-mediated therapy for myeloma and chronic lymphocytic leukemia (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Intercellular cell adhesion molecule-1 (CD54 or ICAM-1) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily (IgSF) of adhesion molecules. CD54 is expressed at low levels in diverse cell types, and is induced by cytokines (TNF-α, interleukin-1) and bacterial lipopolysaccharide (1). Apical localization of CD54 on endothelial cells (or basolateral localization on epithelial cells) is a prerequisite for leukocyte trafficking through the endothelial (or epithelial) barrier (1). Apical expression of CD54 on epithelial cells mediates pathogen invasion as well as host defense, a pattern also observed in tumors (1). CD54 also functions as a co-stimulator on antigen presenting cells, binding to its receptor LFA-1 (leukocyte function-associated antigen-1) on the surface of T cells during antigen presentation (2). Cross-linking of CD54 or binding to its ligand triggers activation of Src family kinases and the Rho/ROCK pathway (3-7). Phosphorylation on Tyr485 of CD54 is required for its association with SHP-2 (5). SHP-2 seems essential for CD54-induced Src activation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD59 is a GPI-anchored membrane protein that functions as inhibitor of the complement membrane attack complex (MAC). CD59 binds to complement components C8 and C9, preventing C9 polymerization and insertion into membranes, therefore inhibiting the complement-dependent cytolysis (CDC) (1). CD59 is a ubiquitously expressed cell membrane protein that protects cells from CDC. Rare cases of CD59 deficiency have been reported to cause paroxysmal nocturnal hemoglobinuria in human patients (2,3). Expression of CD59 on tumor cells and viral infected cells makes them resist antibody-dependent complement-mediated lysis. Potent inhibitors for CD59 have been actively pursued for therapeutic applications (4,5). In addition, CD59 may regulate insulin secretion by modulating exocytosis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD7 is a type-I transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD7 is one of the earliest surface markers to be expressed on the surface of developing T cells and its expression is maintained throughout maturation of multiple T cell subsets and NK cells (1-3). Engagement of CD7 through binding its ligand, SECTM1, has been shown to promote tyrosine phosphorylation of its cytoplasmic domain, recruitment of PI3K, and delivery of costimulatory signals for T cell activation (4-6). While CD7 is expressed on normal T cells, it is also highly expressed in a variety of T cell malignancies, which has poised it as a potential target of immunotherapy (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD70 is a type II transmembrane glycoprotein and a member of the tumor necrosis factor ligand superfamily (TNFSF), also known as CD27L and TNFSF7. It is normally expressed on the medullary thymic epithelial cells. Its expression is induced on activated lymphoid cells (B cells, T cells, and NK cells) and dendritic cells. CD70 is a ligand for CD27, a co-stimulatory receptor that plays an important role in T cell activation and proliferation (1,2). CD70 overexpression has been reported in various tumors such as renal cell carcinoma, glioblastoma, and non-small cell lung carcinoma and it’s being actively pursued as a therapeutic target (3-6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Antigen receptors found on the surface of B cells contain a heterodimeric signaling component composed of CD79A and CD79B, also known as Ig α and Ig β, respectively (1,2). Presence of this receptor complex is essential for B-cell development and function (3). Together these two proteins and the associated B cell receptor initiate intracellular signaling following antigen binding (4,5). An immunoreceptor tyrosine-based activation motif (ITAM) found in the CD79A intracellular region appears to be important for its function (6). Antigen binding precedes formation of the CD79A and CD79B heterodimer and subsequent activation of receptor associated kinases (7). Research has shown that CD79A is a marker for B-lineage lymphoblastic leukemia (8). Additionally, investigators have found that mutations in the CD79A (MB1) gene are associated with abnormally low levels of functional B cell receptors in some cases of chronic B cell lymphocytic leukemia (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD99 is a transmembrane protein involved in many cellular functions, including cell adhesion and migration, endocytosis and exocytosis, and intracellular protein trafficking. It is highly expressed in all leukocyte lineages, Sertoli cells, granulosa cells, and pancreatic islet cells (1,2). Due to alternative splicing, there are two isoforms of CD99 that differ at the carboxy-terminus. CD99 Type I (CD99wt) is the full-length form containing 185 amino acids and CD99 Type II (CD99sh) contains 161 amino acids. Their expression is differentially regulated and they may have opposite functions in different contexts (3,4). CD99 is expressed in many types of tumors and has been used for differential diagnosis of conventional Ewing sarcoma. It has been actively pursued as a therapeutic target (5,6). On the other hand, CD99 may also play a tumor suppressor role in other tumors, such as Hodgkin’s lymphomas, osteosarcomas, and pancreatic tumors (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The entry of eukaryotic cells into mitosis is regulated by cdc2 kinase activation, a process controlled at several steps including cyclin binding and phosphorylation of cdc2 at Thr161 (1). However, the critical regulatory step in activating cdc2 during progression into mitosis appears to be dephosphorylation of cdc2 at Thr14 and Tyr15 (2). Phosphorylation at Thr14 and Tyr15, resulting in inhibition of cdc2, can be carried out by Wee1 and Myt1 protein kinases (3,4). The cdc25 phosphatase may be responsible for removal of phosphates at Thr14 and Tyr15 and subsequent activation of cdc2 (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The cell division cycle demands accuracy to avoid the accumulation of genetic damage. This process is controlled by molecular circuits called "checkpoints" that are common to all eukaryotic cells (1). Checkpoints monitor DNA integrity and cell growth prior to replication and division at the G1/S and G2/M transitions, respectively. The cdc2-cyclin B kinase is pivotal in regulating the G2/M transition (2,3). Cdc2 is phosphorylated at Thr14 and Tyr15 during G2-phase by the kinases Wee1 and Myt1, rendering it inactive. The tumor suppressor protein retinoblastoma (Rb) controls progression through the late G1 restriction point (R) and is a major regulator of the G1/S transition (4). During early and mid G1-phase, Rb binds to and represses the transcription factor E2F (5). The phosphorylation of Rb late in G1-phase by CDKs induces Rb to dissociate from E2F, permitting the transcription of S-phase-promoting genes. In vitro, Rb can be phosphorylated at multiple sites by cdc2, cdk2, and cdk4/6 (6-8). DNA damage triggers both the G2/M and the G1/S checkpoints. DNA damage activates the DNA-PK/ATM/ATR kinases, which phosphorylate Chk at Ser345 (9), Chk2 at Thr68 (10) and p53 (11). The Chk kinases inactivate cdc25 via phosphorylation at Ser216, blocking the activation of cdc2.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The cdc25 protein phosphatase family plays a critical role in activating cyclin-dependent kinases (CDKs) via dephosphorylation of conserved Thr14/Tyr15 inhibitory phosphorylation sites. While cdc25C is primarily responsible for activating CDK1 to overcome the G2/M checkpoint and allow mitotic entry, the primary substrate of cdc25A is CDK2, which, when active, allows progression through the G1/S and intra-S checkpoints (1). Abundance, subcellular localization and activity of cdc25A is tightly controlled by a variety of mechanisms, including phosphorylation, ubiquitination, and inhibitory binding to 14-3-3 proteins. During normal cell cycle progression, elevated c-Myc and E2F transcription factor levels lead to increased cdc25A expression (2). When conditions are favorable for DNA synthesis, cdc25A and CDK2 form an activation loop, wherein each activates the other enzyme (1). DNA damage, on the other hand, leads to multisite phosphorylation at inhibitory sites (Ser123, Ser177, Ser278, Ser292, and Thr506) by Chk1 and Chk2, which result in 14-3-3 binding and ubiquitin-mediated degradation (3,4).