Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Product listing: SimpleChIP® Plus Enzymatic Chromatin IP Kit (Agarose Beads) #9004 to PathScan® Phospho-SAPK/JNK (Thr183/Tyr185) Sandwich ELISA Antibody Pair, UniProt ID P45983 #7217

$545
30 immunoprecipitations
1 Kit
The SimpleChIP® Plus Enzymatic Chromatin IP Kit (Agarose Beads) #9004 contains the buffers and reagents necessary to perform up to 30 chromatin immunoprecipitations from cells or tissue samples, and is optimized for 4 X 106 cells or 25 mg of tissue per immunoprecipitation. A complete assay can be performed in as little as two days and can easily be scaled up or down for use with more or less cells or tissue sample.Cells or tissue are fixed with formaldehyde and lysed, and chromatin is fragmented by partial digestion with Micrococcal Nuclease to obtain chromatin fragments of 1 to 5 nucleosomes. Enzymatic fragmentation of chromatin is much milder than sonication and eliminates problems resulting from variability in sonication power and emulsification of chromatin during sonication, which can result in incomplete fragmentation of chromatin or loss of antibody epitopes due to protein denaturation and degradation. Chromatin immunoprecipitations are performed using ChIP-validated antibodies and ChIP-Grade Protein G Agarose Beads. After reversal of protein-DNA cross-links, the DNA is purified using DNA purification spin columns, allowing for easy and efficient recovery of DNA and removal of protein contaminants without the need for phenol/chloroform extractions and ethanol precipitations. The enrichment of particular DNA sequences during immunoprecipitation can be analyzed by a variety of methods, including standard PCR and quantitative real-time PCR. Please note that this kit is not compatible with ChIP-seq because the ChIP-Grade Protein G Agarose Beads are blocked with sonicated salmon sperm DNA, which interferes with downstream sequencing.The SimpleChIP® Plus Kit also provides important controls to ensure a successful ChIP experiment. The kit contains a positive control Histone H3 Antibody, a negative control Normal Rabbit IgG Antibody and primer sets for PCR detection of the human and mouse ribosomal protein L30 (RPL30) genes. Histone H3 is a core component of chromatin and is bound to most DNA sequences throughout the genome, including the RPL30 locus. Thus, the Histone H3 Antibody provides a universal positive control that should enrich for almost any locus examined.

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to identify multiple proteins associated with a specific region of the genome, or the opposite, to identify the many regions of the genome bound by a particular protein (3-6). It can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors and DNA repair proteins. When performing the ChIP assay, cells or tissues are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. The chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or Quantitative Real-Time PCR can be used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing, or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8).

$561
30 immunoprecipitations
1 Kit
The SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005 contains the buffers and reagents necessary to perform up to 30 chromatin immunoprecipitations from cells or tissue samples, and is optimized for 4 X 106 cells or 25 mg of tissue per immunoprecipitation. A complete assay can be performed in as little as two days and can easily be scaled up or down for use with more or less cells or tissue sample. This kit is compatable with ChIP-seq.Cells or tissue are fixed with formaldehyde and lysed, and chromatin is fragmented by partial digestion with Micrococcal Nuclease to obtain chromatin fragments of 1 to 5 nucleosomes. Enzymatic fragmentation of chromatin is much milder than sonication and eliminates problems resulting from variability in sonication power and emulsification of chromatin during sonication, which can result in incomplete fragmentation of chromatin or loss of antibody epitopes due to protein denaturation and degradation. Chromatin immunoprecipitations are performed using ChIP-validated antibodies and ChIP-Grade Protein G Magnetic Beads. After reversal of protein-DNA cross-links, the DNA is purified using DNA purification spin columns, allowing for easy and efficient recovery of DNA and removal of protein contaminants without the need for phenol/chloroform extractions and ethanol precipitations. The enrichment of particular DNA sequences during immunoprecipitation can be analyzed by a variety of methods, including standard PCR, quantitative real-time PCR, or amplification for ChIP on chip, sequencing or cloning techniques. This kit is compatible with ChIP-seq.The SimpleChIP® Plus Kit also provides important controls to ensure a successful ChIP experiment. The kit contains a positive control Histone H3 Antibody, a negative control Normal Rabbit IgG Antibody and primer sets for PCR detection of the human and mouse ribosomal protein L30 (RPL30) genes. Histone H3 is a core component of chromatin and is bound to most DNA sequences throughout the genome, including the RPL30 locus. Thus, the Histone H3 Antibody provides a universal positive control that should enrich for almost any locus examined.

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to identify multiple proteins associated with a specific region of the genome, or the opposite, to identify the many regions of the genome bound by a particular protein (3-6). It can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors and DNA repair proteins. When performing the ChIP assay, cells or tissues are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. The chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or Quantitative Real-Time PCR can be used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing, or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8).

$478
24 immunoprecipitations
1 Kit
The SimpleChIP® Plus Sonication Chromatin IP Kit contains the buffers and reagents necessary to perform up to 24 chromatin immunoprecipitations from cells or tissue samples, and is optimized for 4 X 106 cells or 25 mg of tissue per immunoprecipitation. A complete assay can be performed in as little as two days and can easily be scaled up or down for use with more or less cells or tissue sample. This kit is compatible with both ChIP-qPCR and ChIP-seq.Cells or tissue are fixed with formaldehyde and lysed, and chromatin is fragmented by sonication to obtain chromatin fragments ranging from 200 to 1000 bp. Sonication-based fragmentation is the more traditional method for fragmenting chromatin; however, sonication should be optimized such that the desired fragment size is achieved with the minimal amount of sonication required, as over-sonication can result in a decrease in immunoprecipitation, specifically for transcription factors and cofactors. The cell and nuclear lysis buffers for this kit have been optimized to maximize enrichment of histones, transcription factors and cofactors. Chromatin immunoprecipitations are performed using ChIP-validated antibodies and ChIP-Grade Protein G Magnetic Beads. After reversal of protein-DNA cross-links, the DNA is purified using DNA purification spin columns, allowing for easy and efficient recovery of DNA and removal of protein contaminants without the need for phenol/chloroform extractions and ethanol precipitations. The enrichment of particular DNA sequences during immunoprecipitation can be analyzed by a variety of methods, including standard PCR, quantitative real-time PCR, or amplification for ChIP on chip, sequencing or cloning techniques.The SimpleChIP® Plus Kit also provides important controls to ensure a successful ChIP experiment. The kit contains a positive control Histone H3 Antibody, a negative control Normal Rabbit IgG Antibody, and primer sets for PCR detection of the human and mouse ribosomal protein L30 (RPL30) genes. Histone H3 is a core component of chromatin and is bound to most DNA sequences throughout the genome, including the RPL30 locus. Thus, the Histone H3 Antibody provides a universal positive control that should enrich for almost any locus examined.

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to identify multiple proteins associated with a specific region of the genome, or the opposite, to identify the many regions of the genome bound by a particular protein (3-6). It can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors and DNA repair proteins. When performing the ChIP assay, cells or tissues are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. The chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or Quantitative Real-Time PCR can be used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing, or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8).

$61
24 immunoprecipitations
1 Kit
This product is offered to conveniently provide additional Sonication Cell Lysis and Nuclear Lysis Buffers for harvesting cells and tissues and preparing chromatin using our SimpleChIP® Plus Sonication Chromatin IP Kit (#56383). This kit provides all the reagents required for performing up to 20 chromatin preparations (or optimizations) and up to 24 chromatin immunoprecipitation (ChIP) assays, however there are instances where extra cell and nuclear lysis buffers are required.
$64
2 x 25 ml
50 ml
$211
10 x 25 ml
250 ml
STOP Solution is a proprietary solution used to terminate the peroxidase/TMB reaction for ELISA applications. The TMB substrate reacts with immobilized horseradish peroxidase (HRP) conjugated secondary antibodies to produce a blue solution. Color intensity is an indication of analyte level. After attaining the desired intensity, the reaction is terminated by addition of STOP Solution. Upon addition of STOP Solution the color turns from blue to yellow. Absorbance at 450 nm can be read immediately, and the reaction is stable for one hour.
REACTIVITY
All Species Expected
$58
50 ml
$191
250 ml
TMB Substrate used is ready to use for ELISA detection. Reaction between the substrate and immobilized horseradish peroxidase (HRP) conjugated secondary antibodies in the ELISA wells produces a blue colored solution. Color intensity and development time will vary depending on assay sensitivity and conditions. After reaching the desired color intensity, the reaction is terminated by addition of an acidic STOP solution which changes the solution color from blue to yellow. While the results will remain stable for one hour following termination, the plate should be analyzed promptly on a microwell reader at 450 nm. TMB is light sensitive and is therefore packaged in amber bottles to protect the solution from direct sunlight. Recommended storage temperature is 4ºC.
REACTIVITY
All Species Expected
$64
5 ml each
$205
25 ml each
LumiGLO®* chemiluminescent substrate is a luminol-based system designed for use with our Phototope®-HRP detection assays utilizing peroxidase-labeled antibodies immobilized on membranes. In the presence of hydrogen peroxide, horseradish peroxidase (HRP) converts luminol to an excited intermediate dianion. This dianion emits light on return to its ground state. Light emission is maximal immediately after exposure of the substrate to HRP and continues for 0.5-1 hour. Light can be captured on X-ray film, typically by exposure for a few seconds. Maximum sensitivity can be obtained by longer exposure. *Avoid repeated exposure to skin (see enclosed Material Safety Data Sheet or refer to our website for further information).
APPLICATIONS

Application Methods: Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

The BCA Protein Assay Kit can be used to measure the protein concentration of lysates or homogenates, in microplate format, prepared with the following buffers: Cell Lysis Buffer (10X) #9803, RIPA Buffer (10X) #9806, PathScan® Sandwich ELISA Lysis Buffer (1X) #7018. The dynamic range for this assay is 0.125 - 2 mg/mL. It is recommended that the BCA Compatibility Reagent be used to decrease interference from reducing agents, chelators, detergents, and other common ingredients found in most lysis buffers. Please see the attached protocol for additional details.
The Phototope-HRP Western Blot Detection System is designed for the chemiluminescent detection of proteins in standard Western blotting applications. Proteins and biotinylated molecular weight markers (provided) are separated by SDS-PAGE and transferred onto membrane. Following incubation with your primary anti-serum, horseradish peroxidase (HRP) linked secondary antibody and HRP-linked anti-biotin antibody are bound and then allowed to react with LumiGLO® reagent. The light emitted by destabilized LumiGLO® reagent is subsequently captured on X-ray film.

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

The Phototope-HRP Western Blot Detection System is designed for the chemiluminescent detection of proteins in standard Western blotting applications. Proteins and biotinylated molecular weight markers (provided) are separated by SDS-PAGE and transferred onto membrane. Following incubation with your primary anti-serum, horseradish peroxidase (HRP) linked secondary antibody and HRP-linked anti-biotin antibody are bound and then allowed to react with LumiGLO® reagent. The light emitted by destabilized LumiGLO® reagent is subsequently captured on X-ray film.

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

$30
25 ml each substrate
50 ml
$259
250 ml each substrate
500 ml
SignalFire™ ECL Reagent from Cell Signaling Technology (CST) is an enhanced chemiluminescent substrate capable of detecting picogram amounts of protein by western blot analysis. Compared to entry-substrates, SignalFire™ ECL Reagent boasts a more robust signal and extended duration of signal output. In the presence of hydrogen peroxide, horseradish peroxidase (HRP) converts luminol to an excited intermediate dianion. This dianion emits light on return to its ground state. Light emission is maximal immediately after exposure of the substrate to HRP and continues for 1 hour. Light can be captured on X-ray film, typically by exposure for a few seconds. Maximum sensitivity can be obtained with longer exposure.
APPLICATIONS

Application Methods: Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

$86
10 ml each substrate
20 ml
$390
50 ml each substrate
100 ml
SignalFire™ Elite ECL Reagent from Cell Signaling Technology (CST) is an ultra sensitive chemiluminescent substrate capable of detecting femtogram amounts of protein by western blot analysis. SignalFire™ Elite ECL Reagent is compatible with both film and digital imaging systems. The extremely intense signal output allows detection of very low abundance proteins, conservation of reagents, and short exposure times.SignalFire™ Elite ECL Reagent requires approximately ten-fold less Anti-rabbit IgG, HRP-linked Antibody #7074 or Anti-mouse IgG, HRP-linked Antibody #7076 than traditional ECL reagents. Limiting the amount of HRP exposed to the membrane prevents high background, oversaturation of the target protein signal, or false negative results. Other HRP-conjugated antibodies, including HRP-conjugated primary and anti-biotin-HRP antibodies, should be diluted similarly. Dilution of secondary antibody from alternative vendors may need to be optimized. Titration of lysate and primary antibody concentration is recommended to achieve optimal signal-to-noise ratio.
APPLICATIONS

Application Methods: Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

$81
10 ml each substrate
20 ml
$363
50 ml each substrate
100 ml
SignalFire™ Plus ECL Reagent from Cell Signaling Technology (CST) is a highly sensitive chemiluminescent substrate capable of detecting low picogram amounts of protein by western blot analysis. SignalFire™ Plus ECL Reagent has an extended duration of signal output lasting several hours following blot exposure, allowing for multiple exposures with either film or a digital imaging system. The strong signal output allows detection of low abundance proteins, conservation of reagents, and short exposure times.SignalFire™ Plus ECL Reagent requires approximately five-fold less Anti-rabbit IgG, HRP-linked Antibody #7074 or Anti-mouse IgG, HRP-linked Antibody #7076 than traditional ECL reagents. Limiting the amount of HRP exposed to the membrane prevents high background, oversaturation of the target protein signal, or false negative results. Other HRP-conjugated antibodies, including HRP-conjugated primary and anti-biotin-HRP antibodies, should be diluted similarly. Dilution of secondary antibody from alternative vendors may need to be optimized. Titration of lysate and primary antibody concentration is recommended to achieve optimal signal-to-noise ratio.
APPLICATIONS

Application Methods: Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

$42
120 slides
1 Kit
$140
1200 slides
1 Kit
The SignalStain® DAB Substrate Kit contains all of the necessary reagents to prepare a working solution of diaminobenzidine (DAB) for staining tissue sections. The DAB working solution reacts with peroxidase (HRP) detection systems such as the SignalStain® Boost IHC Detection Reagents (HRP, Rabbit #8114, and HRP, Mouse #8125), yielding a brown reaction product.
APPLICATIONS

Application Methods: Immunohistochemistry (Paraffin)

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-4E-BP1 (Thr37/Thr46) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-4E-BP1 (Thr37/Thr46) Sandwich ELISA Kit #7216. Capture and Detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The Phospho-4E-BP1 (Thr37/Thr46) Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by a 4E-BP1 Detection Antibody and anti-Mouse IgG, HRP conjugated antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of Phospho-4E-BP1 (Thr37/Thr46) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey, Mouse, Rat

Background: Translation repressor protein 4E-BP1 (also known as PHAS-1) inhibits cap-dependent translation by binding to the translation initiation factor eIF4E. Hyperphosphorylation of 4E-BP1 disrupts this interaction and results in activation of cap-dependent translation (1). Both the PI3 kinase/Akt pathway and FRAP/mTOR kinase regulate 4E-BP1 activity (2,3). Multiple 4E-BP1 residues are phosphorylated in vivo (4). While phosphorylation by FRAP/mTOR at Thr37 and Thr46 does not prevent the binding of 4E-BP1 to eIF4E, it is thought to prime 4E-BP1 for subsequent phosphorylation at Ser65 and Thr70 (5).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-Akt (Thr308) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-Akt (Thr308) Sandwich ELISA Kit #7252. Capture and Detection Antibodies (100X stocks) and HRP-Conjugated Secondary Antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The Akt Rabbit Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added, followed by Phospho-Akt (Thr308) Mouse Detection Antibody and HRP-conjugated Anti-Mouse IgG. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-Akt (Thr308) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-Akt1 (Ser473) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-Akt1 (Ser473) Sandwich ELISA Kit #7160. Capture and Detection antibodies (100X stocks) and HRP-Conjugated Secondary Antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The Phospho-Akt (Ser473) Rabbit Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by Akt1 Mouse Detection Antibody and HRP-conjugated Anti-Mouse IgG. HRP substrate (TMB) is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-Akt1 (Ser473) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse, Rat

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-AMPKα (Thr172) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-AMPKα-(Thr172) Sandwich ELISA Kit #7959. Capture and Detection antibodies (100X stocks) and Anti-Mouse IgG, HRP-linked Antibody (1000X stock) are supplied. Sufficient reagents are provided for 4 x 96 well ELISAs. The AMPKα Rabbit Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by a Phospho-AMPKα (Thr172) Mouse Detection Antibody and Anti-Mouse IgG, HRP-linked Antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of Phospho-AMPKα (Thr172) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-c-Jun (Ser63) Sandwich ELISA Antibody Pair is offered as an alternative to our PathScan® Phospho-c-Jun (Ser63) Sandwich ELISA Kit #7145. Capture and Detection antibodies (100X stocks) and a HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are provided for performing 4 x 96 well ELISAs. Phospho-c-Jun (Ser63) Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added, followed by c-Jun Detection Antibody and HRP-conjugated secondary antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance at 450 nm is proportional to the quantity of phospho-c-jun (Ser63) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse, Rat

Background: c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

$469
Reagents for 4 x 96 well plates
1 Kit
Capture and Detection Antibodies (100X stocks) and HRP-Conjugated Streptavidin (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The c-Kit Mouse Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by Biotinylated Phospho-Tyrosine Mouse Detection Antibody and HRP-conjugated streptavidin. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-c-Kit (panTyr) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: c-Kit is a member of the subfamily of receptor tyrosine kinases that includes PDGF, CSF-1, and FLT3/flk-2 receptors (1,2). It plays a critical role in activation and growth in a number of cell types including hematopoietic stem cells, mast cells, melanocytes, and germ cells (3). Upon binding with its stem cell factor (SCF) ligand, c-Kit undergoes dimerization/oligomerization and autophosphorylation. Activation of c-Kit results in the recruitment and tyrosine phosphorylation of downstream SH2-containing signaling components including PLCγ, the p85 subunit of PI3 kinase, SHP2, and CrkL (4). Molecular lesions that impair the kinase activity of c-Kit are associated with a variety of developmental disorders (5), and mutations that constitutively activate c-Kit can lead to pathogenesis of mastocytosis and gastrointestinal stromal tumors (6). Tyr719 is located in the kinase insert region of the catalytic domain. c-Kit phosphorylated at Tyr719 binds to the p85 subunit of PI3 kinase in vitro and in vivo (7).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-c-Kit (Tyr719) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-c-Kit (Tyr719) Sandwich ELISA Kit #7298. Capture and Detection Antibodies (100X stocks) and HRP-Conjugated Secondary Antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The c-Kit Mouse Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by Phospho-c-Kit (Tyr719) Rabbit Detection Antibody and Anti-rabbit IgG, HRP-linked Antibody. HRP substrate (TMB) is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-c-Kit (Tyr719) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: c-Kit is a member of the subfamily of receptor tyrosine kinases that includes PDGF, CSF-1, and FLT3/flk-2 receptors (1,2). It plays a critical role in activation and growth in a number of cell types including hematopoietic stem cells, mast cells, melanocytes, and germ cells (3). Upon binding with its stem cell factor (SCF) ligand, c-Kit undergoes dimerization/oligomerization and autophosphorylation. Activation of c-Kit results in the recruitment and tyrosine phosphorylation of downstream SH2-containing signaling components including PLCγ, the p85 subunit of PI3 kinase, SHP2, and CrkL (4). Molecular lesions that impair the kinase activity of c-Kit are associated with a variety of developmental disorders (5), and mutations that constitutively activate c-Kit can lead to pathogenesis of mastocytosis and gastrointestinal stromal tumors (6). Tyr719 is located in the kinase insert region of the catalytic domain. c-Kit phosphorylated at Tyr719 binds to the p85 subunit of PI3 kinase in vitro and in vivo (7).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-IGF-I Receptor β (Tyr1131) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-IGF-I Receptor β (Tyr1131) Sandwich ELISA Kit #7302. Capture and detection antibodies (100X stocks) and HRP-linked secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The phospho-IGF-I receptor β (Tyr1131) capture antibody is coated on a 96 well microplate in PBS overnight. After blocking, cell lysates are added followed by an IGF-I receptor detection antibody and anti-mouse IgG, HRP-linked antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-IGF-I receptor β (Tyr1131) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Receptor autophosphorylation follows binding of the IGF-I and IGF-II ligands. Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-Insulin Receptor β (Tyr1146) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-Insulin Receptor β (Tyr1146) Sandwich ELISA Kit #7254. Capture and detection antibodies (100X stocks) and HRP-linked secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The phospho-insulin receptor β (Tyr1146) capture antibody is coated on a 96 well microplate in PBS overnight. After blocking, cell lysates are added followed by an insulin receptor β detection antibody and anti-mouse IgG, HRP-linked antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-insulin receptor β (Tyr1146) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Receptor autophosphorylation follows binding of the IGF-I and IGF-II ligands. Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-Insulin Receptor β (Tyr1150/1151) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-Insulin Receptor β (Tyr1150/1151) Sandwich ELISA Kit #7258. Capture and detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The insulin receptor β capture antibody is coated on a 96 well microplate in PBS overnight. After blocking, cell lysates are added followed by a phospho-insulin receptor β (Tyr1150/1151) detection antibody and anti-rabbit IgG, HRP conjugated antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-insulin receptor β (Tyr1150/1151) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Receptor autophosphorylation follows binding of the IGF-I and IGF-II ligands. Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-IκB-α (Ser32) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-IκBα (Ser32) Sandwich ELISA Kit #7355. Capture and Detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The IκBα Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by a Phospho-IκBα (Ser32) Detection Antibody and anti-Rabbit IgG, HRP conjugated antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of Phospho-IκBα (Ser32) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins (1-3). Activation occurs via phosphorylation of IκBα at Ser32 and Ser36 followed by proteasome-mediated degradation that results in the release and nuclear translocation of active NF-κB (3-7). IκBα phosphorylation and resulting Rel-dependent transcription are activated by a highly diverse group of extracellular signals including inflammatory cytokines, growth factors, and chemokines. Kinases that phosphorylate IκB at these activating sites have been identified (8).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-NF-κB p65 (Ser536) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan®Phospho-NF-κB p65 (Ser536) Sandwich ELISA Kit #7173. Capture and Detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The Phospho-NF-κB p65 Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by a NF-κB p65 (Ser536) Detection Antibody and anti-Rabbit IgG, HRP conjugated antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of Phospho-NF-κB p65 (Ser536) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-p44/42 MAPK (Thr202/Tyr204) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-p44/42 MAPK (Thr202/Tyr204) Sandwich ELISA Kit #7177. Capture and detection antibodies (100X stocks) and an HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The Phospho-p44/42 MAPK Rabbit Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysate is added followed by a p44/42 MAPK Mouse Detection Antibody and an HRP-conjugated Anti-Mouse IgG Antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of p44/42 MAPK phosphorylated at Thr202/Tyr204.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

$469
Reagents for 4 x 96 well plates
1 Kit
Cell Signaling Technology's PathScan® Phospho-p70 S6 Kinase (Thr389) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-p70 S6 Kinase (Thr389) Sandwich ELISA Kit #7063. Capture and detection antibodies (100X stocks) and an HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The p70 S6 kinase rabbit capture antibody is coated onto a 96 well microplate overnight in PBS. After blocking, cell lysates are added followed by a phospho-p70 S6 kinase (Thr389) mouse detection antibody and anti-mouse IgG, HRP-linked antibody. HRP substrate (TMB) is then added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-p70 S6 kinase (Thr389).Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase that is required for cell growth and G1 cell cycle progression (1,2). p70 S6 kinase phosphorylates the S6 protein of the 40S ribosomal subunit and is involved in translational control of 5' oligopyrimidine tract mRNAs (1). A second isoform, p85 S6 kinase, is derived from the same gene and is identical to p70 S6 kinase except for 23 extra residues at the amino terminus, which encode a nuclear localizing signal (1). Both isoforms lie on a mitogen activated signaling pathway downstream of phosphoinositide-3 kinase (PI-3K) and the target of rapamycin, FRAP/mTOR, a pathway distinct from the Ras/MAP kinase cascade (1). The activity of p70 S6 kinase is controlled by multiple phosphorylation events located within the catalytic, linker and pseudosubstrate domains (1). Phosphorylation of Thr229 in the catalytic domain and Thr389 in the linker domain are most critical for kinase function (1). Phosphorylation of Thr389, however, most closely correlates with p70 kinase activity in vivo (3). Prior phosphorylation of Thr389 is required for the action of phosphoinositide 3-dependent protein kinase 1 (PDK1) on Thr229 (4,5). Phosphorylation of this site is stimulated by growth factors such as insulin, EGF and FGF, as well as by serum and some G-protein-coupled receptor ligands, and is blocked by wortmannin, LY294002 (PI-3K inhibitor) and rapamycin (FRAP/mTOR inhibitor) (1,6,7). Ser411, Thr421 and Ser424 lie within a Ser-Pro-rich region located in the pseudosubstrate region (1). Phosphorylation at these sites is thought to activate p70 S6 kinase via relief of pseudosubstrate suppression (1,2). Another LY294002 and rapamycin sensitive phosphorylation site, Ser371, is an in vitro substrate for mTOR and correlates well with the activity of a partially rapamycin resistant mutant p70 S6 kinase (8).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-PDGF Receptor β (Tyr751) Sandwich ELISA Antibody Pair is being offered as an economical alternative to our PathScan® Phospho-PDGF Receptor β (Tyr751) Sandwich ELISA Kit #7345. Capture and detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The PDGF receptor β capture antibody is coated on a 96 well microplate in PBS overnight. After blocking, cell lysates are added followed by a phospho-PDGF receptor β (Tyr751) detection antibody and anti-mouse IgG, HRP conjugated antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-PDGF receptor β (Tyr751) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-SAPK/JNK (Thr183/Tyr185) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-SAPK/JNK (Thr183/Tyr185) Sandwich ELISA Kit #7325. Capture and Detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The Phospho-SAPK/JNK (Thr183/Tyr185) Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by SAPK/JNK Detection Antibody and Anti-mouse IgG, HRP-conjugated Antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of Phospho-SAPK/JNK (Thr183/Tyr185) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: The stress-activated protein kinase/Jun-amino-terminal kinase SAPK/JNK is potently and preferentially activated by a variety of environmental stresses including UV and gamma radiation, ceramides, inflammatory cytokines, and in some instances, growth factors and GPCR agonists (1-6). As with the other MAPKs, the core signaling unit is composed of a MAPKKK, typically MEKK1-MEKK4, or by one of the mixed lineage kinases (MLKs), which phosphorylate and activate MKK4/7. Upon activation, MKKs phosphorylate and activate the SAPK/JNK kinase (2). Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (3). Both Rac1 and cdc42 mediate the stimulation of MEKKs and MLKs (3). Alternatively, MKK4/7 can be activated in a GTPase-independent mechanism via stimulation of a germinal center kinase (GCK) family member (4). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (3). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (3,5).