20% off purchase of 3 or more products* | Learn More >>

Product listing: FXR2 Antibody, UniProt ID P51116 #4247 to GIT2 Antibody, UniProt ID Q14161 #6953

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Fragile X syndrome is a genetic disorder characterized by a spectrum of physical and behavioral features and is a frequent form of inherited mental retardation (1). X-linked FMRP (FMR-1) and its two autosomal homologs, FXR1 and FXR2, are polyribosome-associated RNA-binding proteins that are involved in the pathogenesis of fragile X syndrome (1-3). Each of the fragile X proteins can self-associate, as well as form heteromers with the other two related proteins (3). FMRP can act as a translation regulator and is a component of RNAi effector complexes (RISC), suggesting a role in gene silencing (4). The Drosophila homolog of FMRP (dFMRP) associates with Argonaute 2 (Ago2) and Dicer and can coimmunoprecipitate with miRNA and siRNA (5). These results suggest that fragile X syndrome is related to abnormal translation caused by defects in RNAi-related pathways. In addition, FMRP, FXR1, and FXR2 are components of stress granules (SG) and have been implicated in the translational regulation of mRNAs (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: FYVE-CENT (ZFYVE26) contains an FYVE zinc finger domain characterized by conserved R(R/RK) and HHCRxCG motifs (1). Phosphatidylinositol 3 phosphate binds to FYVE-CENT via the FYVE domain and this binding is crucial in phosphoinositide (PtdIns3P)-regulated cytokinesis (1-3). Research evidence suggests that during cytokinesis, FYVE-CENT directly interacts with TTC19 and is recruited to the midbody by the kinesin protein KIF13A (4). FYVE-CENT may also be involved in the tumor suppressor function of Beclin-1 (5). Researchers have linked the defects in FYVE-CENT to hereditary spastic paraplegia, a condition characterized by deterioration of the corpus callosum of the brain (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ras GTPase-activating protein-binding protein 1, also known as GAP SH3 domain-binding protein 1 (G3BP1), was identified as a protein that interacts with the SH3 domain of Ras GTPase-activating protein (RasGap) (1). G3BP1 is involved in the regulation of multiple cellular processes, including mRNA decay and inhibition of translation initiation (2). Furthermore, G3BP1 is essential for the assembly of stress granules (SGs) and functions as an SG-nucleating protein (3). Research studies show that arginine demethylation of G3BP1 promotes SG assembly during oxidative stress (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Grb-associated binder (Gab) family is a family of adaptor proteins recruited by a wide variety of receptor tyrosine kinases (RTKs) such as EGFR, HGFR, insulin receptor, cytokine receptor and B cell antigen receptors. Upon stimulation of RTKs by their cognate ligand, Gab is recruited to the plasma membrane where it is phosphorylated and functions as a scaffold (1-4). Multiple tyrosine phosphorylation sites of Gab1 protein have been identified (5). Phosphorylation of Tyr472 regulates its binding to p85 PI3 kinase (6,7). Phosphorylation of Gab1 at Tyr307, Tyr373 and Tyr407 modulates its association to PLCγ (8). Phosphorylation of Tyr627 and Tyr659 is required for Gab1 binding to and activation of the protein tyrosine phosphatase SHP2 (6,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in the central nervous system and interacts with three different receptors: GABA(A), GABA(B) and GABA(C) receptor. The ionotropic GABA(A) and GABA(C) receptors are ligand-gated ion channels that produce fast inhibitory synaptic transmission. In contrast, the metabotropic GABA(B) receptor is coupled to G proteins that modulate slow inhibitory synaptic transmission (1). Functional GABA(B) receptors form heterodimers of GABA(B)R1 and GABA(B)R2 where GABA(B)R1 binds the ligand and GABA(B)R2 is the primary G protein contact site (2). Two isoforms of GABA(B)R1 have been cloned: GABA(B)R1a is a 130 kD protein and GABA(B)R1b is a 95 kD protein (3). G proteins subsequently inhibit adenyl cylase activity and modulate inositol phospholipid hydrolysis. GABA(B) receptors have both pre- and postsynaptic inhibitions: presynaptic GABA(B) receptors inhibit neurotransmitter release through suppression of high threshold calcium channels, while postsynaptic GABA(B) receptors inhibit through coupled activation of inwardly rectifying potassium channels. In addition to synaptic inhibition, GABA(B) receptors may also be involved in hippocampal long-term potentiation, slow wave sleep and muscle relaxation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in the central nervous system and interacts with three different receptors: GABA(A), GABA(B) and GABA(C) receptor. The ionotropic GABA(A) and GABA(C) receptors are ligand-gated ion channels that produce fast inhibitory synaptic transmission. In contrast, the metabotropic GABA(B) receptor is coupled to G proteins that modulate slow inhibitory synaptic transmission (1). Functional GABA(B) receptors form heterodimers of GABA(B)R1 and GABA(B)R2 where GABA(B)R1 binds the ligand and GABA(B)R2 is the primary G protein contact site (2). Two isoforms of GABA(B)R1 have been cloned: GABA(B)R1a is a 130 kD protein and GABA(B)R1b is a 95 kD protein (3). G proteins subsequently inhibit adenyl cylase activity and modulate inositol phospholipid hydrolysis. GABA(B) receptors have both pre- and postsynaptic inhibitions: presynaptic GABA(B) receptors inhibit neurotransmitter release through suppression of high threshold calcium channels, while postsynaptic GABA(B) receptors inhibit through coupled activation of inwardly rectifying potassium channels. In addition to synaptic inhibition, GABA(B) receptors may also be involved in hippocampal long-term potentiation, slow wave sleep and muscle relaxation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The enzyme glutamate decarboxylase (GAD) is responsible for the synthesis of the essential neurotransmitter gamma-aminobutyric acid (GABA) from L-glutamic acid (1). GAD1 (GAD67) and GAD2 (GAD65) are expressed in nervous and endocrine systems (2) and are thought to be involved in synaptic transmission (3) and insulin secretion (4), respectively. Autoantibodies against GAD2 may serve as markers for type I diabetes (5). Many individuals suffering from an adult onset disorder known as Stiff Person Syndrome (SPS) also express autoantibodies to GAD2 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: The enzyme glutamate decarboxylase (GAD) is responsible for the synthesis of the essential neurotransmitter gamma-aminobutyric acid (GABA) from L-glutamic acid (1). GAD1 (GAD67) and GAD2 (GAD65) are expressed in nervous and endocrine systems (2) and are thought to be involved in synaptic transmission (3) and insulin secretion (4), respectively. Autoantibodies against GAD2 may serve as markers for type I diabetes (5). Many individuals suffering from an adult onset disorder known as Stiff Person Syndrome (SPS) also express autoantibodies to GAD2 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Galectins are a family of β-galactose binding proteins that are characterized by their affinity for poly-N-acetyllactosamine-enriched glycoconjugates and their carbohydrate-binding site (1,2). Members of the galectin family have been implicated in a variety of biological functions including cell adhesion (3), growth regulation (4), cytokine production (5), T cell apoptosis (6), and immune responses (7). Galectin-1/LGALS1 has been shown to be expressed in a wide range of tissues and cell types. The level and pattern of expression of galectin-1 have been shown to change during development (8). In addition to a role in developmental processes, galectin-1 has been shown to be involved in central immune tolerance and may function in tumorigenesis by modulating the immune response to the tumor (9,10). Research studies have shown that galectin-1 expression is increased in several human cancers, suggesting a correlation with metastatic potential (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Galectins are a family of β-galactose binding proteins that are characterized by an affinity for poly-N-acetyllactosamine-enriched glycoconjugates and a carbohydrate-binding site (1,2). Members of the galectin family have been implicated in a variety of biological functions including cell adhesion (3), growth regulation (4), cytokine production (5), T-cell apoptosis (6), and immune responses (7).Galectin-3/LGALS3 is involved in several diverse biological functions. Galectin-3/LGALS3 binds IgE (8). Galectin-3/LGALS3 is an unusual protein in that can be found both extracellularly and intracellularly. Intracellularly, galectin-3/LGALS3 can localize to the cytoplasm, nucleus, or both, depending on cell type and experimental conditions. Nuclear galectin-3/LGALS3 has been identified as a pre-mRNA splicing factor (9). Galectin-3/LGALS3 production has been shown to increase during inflammation and in obesity, and the protein itself can have an inflammatory effect under certain conditions (10). Galectin-3/LGALS3 forms a complex with α3, β1 integrin to act as a surface receptor on endothelial cells for the NG2 proteoglycan, which triggers cell motility and angiogenesis (11). In addition to these functions, galectin-3/LGALS3 is also a required factor for the terminal differentiation of epithelial cells (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: GAP43 is a nervous system specific, growth-associated protein enriched in growth cones and areas of high plasticity (1). Phosphorylation of GAP43 at Ser41 by PKC is regulated by intracellular Ca2+ and affects the ability of GAP43 to bind calmodulin (2,3). GAP43 is integral to growth cone formation, neurite outgrowth, and the development of a functional cerebral cortex (4,5). Aberrant GAP43 expression can be seen in patients diagnosed with schizophrenia and Alzheimer's disease (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The gasdermin family that includes GSDMA, GSDMB, GSMDC, GSDMD, and GSDME have been shown to play a role in inflammation and cell death. Gasdermin D has been reported to have a critical role as a downstream effector of pyroptosis (1,2). Pyroptosis is a lytic type of cell death triggered by inflammasomes, multiprotein complexes assembled in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) that result in the activation of caspase-1 and subsequent cleavage of pro-inflammatory cytokines IL-1β and IL-18 (3). Gasdermin D was identified by two independent groups as a substrate of inflammatory caspases, caspase-1 and caspase-11/4/5, producing two fragments: GSDMD-N and GSDMD-C. Cleavage results in release of an intramolecular inhibitory interaction between the N- and C-terminal domains, allowing the N-terminal fragment GSMDM-N to initiate pyroptosis through the formation of pores on the plasma membrane (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Gasdermin D (GSDMD), a member of the gasdermin family that includes GSDMA, GSDMB, and GSMDC, has been reported to have a critical role as a downstream effector of pyroptosis (1,2). Pyroptosis is a lytic type of cell death triggered by inflammasomes, multiprotein complexes assembled in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) that result in the activation of caspase-1 and subsequent cleavage of pro-inflammatory cytokines IL-1β and IL-18 (3). Gasdermin D was identified by two independent groups as a substrate of inflammatory caspases, caspase-1 and caspase-11/4/5, producing two fragments: GSDMD-N and GSDMD-C. Cleavage results in release of an intramolecular inhibitory interaction between the N- and C-terminal domains, allowing the N-terminal fragment GSMDM-N to initiate pyroptosis through the formation of pores on the plasma membrane (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Gasdermin D (GSDMD), a member of the gasdermin family that includes GSDMA, GSDMB, and GSMDC, has been reported to have a critical role as a downstream effector of pyroptosis (1,2). Pyroptosis is a lytic type of cell death triggered by inflammasomes, multiprotein complexes assembled in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) that result in the activation of caspase-1 and subsequent cleavage of pro-inflammatory cytokines IL-1β and IL-18 (3). Gasdermin D was identified by two independent groups as a substrate of inflammatory caspases, caspase-1 and caspase-11/4/5, producing two fragments: GSDMD-N and GSDMD-C. Cleavage results in release of an intramolecular inhibitory interaction between the N- and C-terminal domains, allowing the N-terminal fragment GSMDM-N to initiate pyroptosis through the formation of pores on the plasma membrane (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The solute carrier 6 gene (SLC6), also known as the neurotransmitter–sodium-symporter family or Na+/Cl- -dependent transporter, encodes for proteins that regulate neurotransmitter (NTT) transport, including monoamine transmitters serotonin, dopamine, and norepinephrin (SERT), GABA transmitters (GAT1, GAT2, GAT3, and BGT1), and glycine transmitters (GLYT1 and GLYT2) (1). These proteins express ubiquitously in the brain and regulate the release and uptake of neurotransmitters in terminal clefts, in both neuronal and non-neuronal cells (2-4). Dysregulation of NTT-transporters is associated with neurological disease like epilepsy, schizophrenia, anxiety, bipolar disorder, and addictions to cocaine and methamphetamines (1). Inhibitors of NTT-transporters are widely used as drugs to treat disorders like depression (tricyclic antidepressants), and antiepileptic tiagabine (5). GAT1 is the only GABA transporter genetically studied in GAT1-KO mouse models where an accumulation of extracellular GABA, leading to a decrease in anxiety and depression-like behaviors (6-8). The lack or reduction of GAT1 diminished aggression in mice, and a condition known as hypoaglesia, where there is a decreased sensitivity to painful stimuli (8,9). GAT1 post-translational modifications include phosphorylation at Tyr107 (IL1), and Tyr317 (IL3), and these mutations identify as the phospho-acceptor-sites, therefore regulating GAT1 (10,11). GABA trafficking is regulated by Tyr phosphorylation, and it has been shown that activation of adenosine A2A receptors in the hippocampus synaptosomes enhanced BAGA uptake by opposing a constitutive PKC-mediated down-regulation of GAT1 (11-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: GATA proteins comprise a group of transcription factors that are related by the presence of conserved zinc finger DNA binding domains, which bind directly to the nucleotide sequence core element GATA (1-3). There are six vertebrate GATA proteins, designated GATA-1 to GATA-6 (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The zinc finger transcription factor GATA-2 is widely expressed and plays an essential role in many developmental processes (1). Studies on GATA-2 knockout mice indicate that this protein is required in hematopoiesis (2). GATA-2 also inhibits the differentiation of white (3) and brown adipocytes (4) and has been shown to suppress the proliferation of neuronal progenitor cells (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Germinal center kinase (GCK) is the founding member of the GCK family, a group of serine/threonine kinases homologous to the yeast Ste20 kinase. GCK is activated by TNF and associated with TRAF2 (TNF receptor-associated factor 2) and MEKK1, thereby activating the SAPK/JNK pathway (1,2). GCK does not significantly phosphorylate MEKK1, instead it enhances MEKK1 oligomerization and autophosphorylation (3). GCK binds and activates MLK3, indicating that GCK may have other effectors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is a well documented mechanism of downregulating protein synthesis under a variety of stress conditions. Kinases activated by viral infection (PKR), endoplasmic reticulum stress (PERK/PEK), amino acid deprivation (GCN2) and hemin deficiency (HRI) can phosphorylate the alpha subunit of eIF2 (1,2). GCN2 is also required for UV-light induced translation inhibition, and in vivo phosphorylation of murine GCN2 at Thr898 is induced by both UV irradiation and by leucine deprivation (3). UV-induced activation of NF-kappaB also requires GCN2, which may act simply by preventing translation of IkappaB-alpha to replace pools that have been ubiquitinated and degraded (4). Interestingly, proteasome inhibitors (MG132 and ALLN) activate the GCN2/eIF2alpha pathway, suggesting a pivotal role for this kinase in stress response and ubiquitin-mediated signaling (5). In vitro autophosphorylation of yeast GCN2 within its activation loop at Thr882 and Thr887 (Thr898 and Thr903 in mouse) has also been reported (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: GCNF (Germ Cell Nuclear Factor), also known as NR6A1 (Nuclear Receptor Subfamily 6 Group A member), is an orphan member of the nuclear receptor gene superfamily (1). It has been shown to be expressed in the nervous system during development and during specific stages in maturing germ cells of the ovary and testis in the adult, and has probable roles in gametogenesis, neurogenesis, and normal embryonic development during gastrulation (1,2). Inactivation of GCNF in mouse results in abnormal posterior development, impaired midbrain development, insufficient closure of the neural tube, and eventual embryonic death (3). GCNF has been shown to be a repressor of OCT-4 and of the protamine genes (4,5) and plays a critical role in the control of gene expression during embryogenesis and spermatogenesis (2,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The initiation of DNA replication in mammalian cells is a highly coordinated process that ensures duplication of the genome only once per cell division cycle. Origins of replication are dispersed throughout the genome and their activities are regulated via the sequential binding of pre-replication and replication factors. The origin recognition complex (ORC) is thought to be bound to chromatin throughout the cell cycle (1,2). The pre-replication complex (pre-RC) forms in late mitosis/early G1 phase beginning with the binding of CDT1 and cdc6 to the origin, which allows binding of the heterohexameric MCM2-7 complex. Once this complex is formed, the origin is “licensed” for initiation of DNA replication. In order to ensure that replication occurs only once per cell cycle, geminin binds to and inhibits CDT1 during the S, G2 and M phases. This prevents the recruitment of the MCM complex to the origins of replication, which blocks the premature reformation of the Pre-RC. At the metaphase/anaphase transition, geminin is degraded by the anaphase-promoting complex (APC) allowing for the formation of new pre-RC (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The neurotransmitters GABA and glycine activate ligand-gated chloride channels and thus mediate fast synaptic inhibition. Gephyrin is a postsynaptic, scaffolding protein anchoring type A GABA and glycine receptors to the cytoskeleton. In addition to gephyrin’s function clustering synaptic neurotransmitter receptors, it plays an essential role in the biosynthesis of the molybdenum cofactor (MoCo). Molybdenum cofactor chelates and activates sulfite oxidase, an enzyme crucial for survival (1). GSK-3β and Erk1/2 phosphorylate gephyrin at residue Ser270 and Ser268, respectively. These post-translational modifications alter the clustering of gephyrin, effecting the amplitude and frequency of GABAergic inhibitory currents (2,3). Researchers are analyzing the role of abnormal gephyrin clustering and function in major neurological, neuro-developmental and psychiatric disorders (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: GFAT1, glutamine:fructose-6-phosphate aminotransferase 1, is the rate-limiting enzyme of the hexosamine biosynthesis pathway (1). This enzyme catalyzes the conversion of fructose-6-phosphate and glutamine to glucosamine-6-phosphate and glutamate (2). The hexosamine biosynthesis pathway generates the building blocks for protein and lipid glycosylation (2). Furthermore, studies suggest that increased activity of this pathway is a contributing factor to hyperglycemia-induced insulin resistance (1,2). GFAT1 is more active in non-insulin-dependent diabetes mellitus (NIDDM) patients (3). Transgenice mice overexpressing this enzyme in skeletal muscle and adipose tissue show an insulin resistance phenotype (4,5). GFAT2, an isoenzyme of GFAT1, was later identified (6, 7). Studies show that the regulation of GFAT2 is different from that of GFAT1, suggesting differential regulation of the hexosamine pathway in different tissues (7).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GGA3 is a member of the GGA family of proteins which also includes GGA1 and GGA2. These proteins consist of four distinct segments: a VHS domain that binds the di-leucine sorting signal DXXLL; a GAT domain that binds Arf-GTP; a hinge region that recruits clathrin; and a GAE domain that has sequence similarity to γ-adaptin and recruits a number of proteins. Arf1-GTPase recruits GGA3 to the trans-Golgi network. GGAs sort acid hydrolases to the lysosome and are involved in transporting proteins containing the DXXLL signal from the Golgi complex to the endosome (1). During apoptosis or cerebral ischemia, GGA3 is cleaved by caspase-3 at Asp313, reducing GGA3 levels and lysosomal degradation of β-secretase (BACE). The resulting elevated amount and activity of BACE plays a role in amyloid-β (Aβ) production, consistent with BACE elevation and Aβ accumulation in Alzheimer’s Disease (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: GTPase immune-associated proteins (GIMAP), also known as immune-associated nucleotide-binding (IAN) proteins, are evolutionarily conserved GTP-binding proteins involved in lymphocyte development, inflammation, and autoimmune diseases (reviewed in 1,2). Human GTPase IMAP family member 5 (GIMAP5, hIan5) is the homolog of the rat Ian4 protein that is mutated in severe cases of T-cell lymphopenia and insulin-dependent diabetes in Biobreeding diabetes-prone (BB-DP) rats (3,4). GIMAP5 protein is preferentially expressed in CD4- and CD8-positive T-cells as well as B-cell lymphomas (4). Research studies using GIMAP5-deficient mice show that GIMAP5 protein is critical for survival of peripheral T-cells, hematopoietic stem cells, and progenitor cells (5-7). Additional studies indicate that GIMAP5 deficiency leads to a loss of immunological tolerance (8). Polymorphisms in the human GIMAP5 gene are associated with systemic lupus erythematosus and type I diabetes (9-11). Potential mechanisms for GIMAP5 control of cell survival include regulation of Bcl-2 family proteins, mitochondrial integrity, lysosomal function, and calcium regulation (7, 12-15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The actin-binding protein girdin (CCDC88A, GIV) is a non-receptor guanine nucleotide exchange factor (GEF) and part of a scaffold that mediates key signaling pathways during cell migration (1). Girdin protein structure includes an amino-terminal Hook domain for microtubule interaction, a coiled-coil dimerization domain, a Gα binding domain, a PI(4)P-binding domain, and a carboxy-terminal receptor-binding domain within a GEF motif (1-5). Akt kinase phosphorylates girdin at Ser1416, which promotes PI(4)P binding, localization of girdin to the membrane leading edge, and regulation of actin organization and cell motility (3). After growth factor receptor activation, girdin binds both G-protein and receptor to form an activation complex at the receptor cytoplasmic tail. The activation complex enhances receptor autophosphorylation and promotes downstream signaling that results in actin organization and cell migration (5). An activated growth factor phosphorylates girdin at its carboxy-terminal Tyr1764 and Tyr1798 residues to form an SH2 docking site for PI3K binding (6). The girdin GEF motif interacts with Gα and leads to release of Gβγ, resulting in further PI3K activation and the completion of signal transduction from receptor to cytoskeleton (7). The cytoskeletal reorganization and cell migration properties of girdin are important in regulating several biological processes, including wound healing, angiogenesis, and cancer progression (8-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: G-protein coupled receptor (GPCR) kinase interacting proteins 1 and 2 (GIT-1 and GIT-2) are highly conserved, ubiquitous scaffold proteins involved in localized signaling to help regulate focal contact assembly and cytoskeletal dynamics. GIT proteins contain multiple interaction domains that allow interaction with small GTPases (including ARF, Rac and cdc42), kinases (such as PAK and MEK), the Rho family GEF PIX, and the focal adhesion protein paxillin (reviewed in 1). GIT-1 is localized to focal adhesions, cytoplasmic complexes and membrane protrusions, and regulates cell protrusion formation and cell migration (2). GIT-1 has also been implicated in neuronal functions including synapse formation (3) and the pathology of Huntington disease (4). Huntington disease is a genetic neurodegenerative condition involving a mutation in the huntington gene. The huntington gene product (htt) is ubiquitinated and degraded in human Huntington disease brains (5). Htt interacts directly with GIT-1 causing enhanced htt proteolysis, indicating that GIT-1 distribution and function may contribute to Huntington disease pathology (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: G protein-coupled receptor (GPCR) kinase interacting proteins 1 and 2 (GIT1 and GIT2) are highly conserved, ubiquitous scaffold proteins involved in localized signaling to help regulate focal contact assembly and cytoskeletal dynamics. GIT proteins contain multiple interaction domains that allow interaction with small GTPases (including ARF, Rac, and cdc42), kinases (such as PAK and MEK), the Rho family GEF Pix, and the focal adhesion protein paxillin (reviewed in 1). GIT1 and GIT2 share many of the same properties, but with at least ten distinct, tissue-specific splice variants. GIT2 has been shown to play an important role inhibiting focal adhesion turnover and membrane protrusion (2,3). Focal adhesion localization and paxillin binding of GIT2 is regulated through phosphorylation at one or more tyrosine sites (Tyr286, Tyr392, Tyr592) by FAK and/or Src (4,5,reviewed in 6). Once at the focal adhesion, GIT2 is thought to play a key role in cell polarity and migration, making it a protein of interest in the investigation of oncogenic signaling pathways (3,5,7).