Microsize antibodies for $99 | Learn More >>

Product listing: IRGM Antibody (Rodent Specific), UniProt ID Q60766 #14979 to KSR1 Antibody, UniProt ID Q8IVT5 #4640

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Immunity-related GTPase family M protein 1 (IRGM, LRG-47) belongs to the p47 family of immunity related guanosine triphosphatases (IRGs) that regulate innate immune responses to intracellular pathogens (1-3). Research studies indicate that IRGM plays a role in autophagy during clearance of intracellular bacteria (4). Expression of IRGM in mice, but not in humans, is induced by inflammatory signals that include interferon and LPS (2,3). Polymorphisms in the corresponding IRGM gene are associated with some cases of tuberculosis (5-7), Crohn’s disease (8,9), and severe sepsis (10). Additional studies indicate that IRGM functions through regulation of autophagy (4). Mitochondrial IRGM plays a role in mitochondrial fission, membrane polarization, and mitophagy (11). Knockout mice for IRGM show increased susceptibility to infection as well as intestinal inflammation and Paneth cell abnormalities (12,13). Knockout mice against IRGM are also resistant to neuronal autophagy following stroke (14). RNA viruses commonly target IRGM in order to suppress autophagy and enhance infection (15).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Insulin receptor substrate 1 (IRS-1) is one of the major substrates of the insulin receptor kinase (1). IRS-1 contains multiple tyrosine phosphorylation motifs that serve as docking sites for SH2-domain containing proteins that mediate the metabolic and growth-promoting functions of insulin (2-4). IRS-1 also contains over 30 potential serine/threonine phosphorylation sites. Ser307 of IRS-1 is phosphorylated by JNK (5) and IKK (6) while Ser789 is phosphorylated by SIK-2, a member of the AMPK family (7). The PKC and mTOR pathways mediate phosphorylation of IRS-1 at Ser612 and Ser636/639, respectively (8,9). Phosphorylation of IRS-1 at Ser1101 is mediated by PKCθ and results in an inhibition of insulin signaling in the cell, suggesting a potential mechanism for insulin resistance in some models of obesity (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Insulin Receptor Substrate 2 (IRS-2) is one of the major substrates of the insulin receptor kinase (1). In vertebrates, IRS-2 functions as a scaffolding protein to coordinate separate branches of the Insulin/IGF-signaling cascades (2). IRS-2 is essential for normal nutrient homeostasis because it mediates both peripheral insulin action and the effect of IGF-1 on B-cell growth. Mice lacking IRS-2 fail to maintain sufficient compensatory insulin secretion and develop diabetes as young adults (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Insulin Receptor Substrate 2 (IRS-2) is one of the major substrates of the insulin receptor kinase (1). In vertebrates, IRS-2 functions as a scaffolding protein to coordinate separate branches of the Insulin/IGF-signaling cascades (2). IRS-2 is essential for normal nutrient homeostasis because it mediates both peripheral insulin action and the effect of IGF-1 on B-cell growth. Mice lacking IRS-2 fail to maintain sufficient compensatory insulin secretion and develop diabetes as young adults (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Flow Cytometry, Peptide ELISA (DELFIA), Western Blotting

Background: Interferon-stimulated 15 kDa protein (ISG15), also known as ubiquitin cross-reactive protein (UCRP), is a member of the ubiquitin-like protein family and functions in various biological pathways from pregnancy to innate immune responses (1). Expression of ISG15 is stimulated by cellular exposure to type 1 interferons α and β, in addition to infection with viruses such as influenza B (2,3). After exposure to type I interferons, both lymphocytes and monocytes, in addition to some fibroblasts and epithelial cells, release ISG15 into culture medium (1,4). ISG15 has been shown to function as a cytokine, stimulating interferon γ secretion by monocytes and macrophages, proliferation of natural killer cells, and chemotactic responses in neutrophils (4,5). ISG15 has also been shown to function intracellularly, being covalently conjugated to other proteins by E1 (Ube1L), E2 (UbcH8) and E3 ligases via a multi-step process analogous to ubiquitination (6,7). ISG15 is removed from proteins by the ubiquitin processing protease Ubp43 (8). ISG15-protein conjugation (ISGylation) is induced by type 1 interferons, and target proteins include the serine protease inhibitor Serpin 2A, PLCγ1, ERK1/2, Jak1 and Stat1 (9,10). Unlike ubiquitination, ISGylation does not target proteins for degradation, rather ISGylation increases Jak1 and Stat1 activity, enhancing the cellular response to interferons (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Various steps in gene expression, such as mRNA processing, surveillance, export, and synthesis are coupled to transcription elongation (1,2). The C-terminal domain (CTD) of the large subunit of RNA polymerase II plays an important role in the integration of these different steps (1,2). IWS1 interacts with Spt6, a CTD-binding transcription elongation factor and H3 chaperone (1,2). IWS1 also recruits another CTD-binding protein, HYPB/Setd2 histone methyltransferase, to the RNA polymerase II complex for elongation-coupled H3K36 trimethylation (2). Thus, IWS1 links Spt6 and HYPB/Setd2 in a large complex and regulates mRNA synthesis and histone methylation at the co-transcriptional level (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins (1-3). Activation occurs via phosphorylation of IκBα at Ser32 and Ser36 followed by proteasome-mediated degradation that results in the release and nuclear translocation of active NF-κB (3-7). IκBα phosphorylation and resulting Rel-dependent transcription are activated by a highly diverse group of extracellular signals including inflammatory cytokines, growth factors, and chemokines. Kinases that phosphorylate IκB at these activating sites have been identified (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins (1-3). Activation occurs via phosphorylation of IκBα at Ser32 and Ser36 followed by proteasome-mediated degradation that results in the release and nuclear translocation of active NF-κB (3-7). IκBα phosphorylation and resulting Rel-dependent transcription are activated by a highly diverse group of extracellular signals including inflammatory cytokines, growth factors, and chemokines. Kinases that phosphorylate IκB at these activating sites have been identified (8).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Bovine, Dog, Human, Monkey, Mouse, Pig, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins (1-3). Activation occurs via phosphorylation of IκBα at Ser32 and Ser36 followed by proteasome-mediated degradation that results in the release and nuclear translocation of active NF-κB (3-7). IκBα phosphorylation and resulting Rel-dependent transcription are activated by a highly diverse group of extracellular signals including inflammatory cytokines, growth factors, and chemokines. Kinases that phosphorylate IκB at these activating sites have been identified (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: JAKMIP1, or Janus kinase and microtubule interactin protein 1, localizes in mitrotubules and the plasma membrane, which associates with microtubules and plays a role in migration of pyramidal neurons (1). JAKMIP1 participates in the microtubule-dependent transport of GABA-B receptor (2). It is also linked to autistic-spectrum disorders (3,4). JAKMIP1 may participate in the JAK1 pathway (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant for formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The JARID (Jumonji/AT-rich interactive domain-containing protein) family contains four members: JARID1A (also RBP2 and RBBP2), JARID1B (also PLU-1), JARID1C (also SMCX) and JARID1D (also SMCY) (4). In addition to the JmJC domain, these proteins contain JmJN, BRIGHT, C5HC2 zinc-finger, and PHD domains, the latter of which binds to methylated histone H3 (Lys9) (4). All four JARID proteins demethylate di- and tri-methyl histone H3 Lys4; JARID1B also demethylates mono-methyl histone H3 Lys4 (5-7). JARID1A is a critical RB-interacting protein and is required for Polycomb-Repressive Complex 2 (PRC2)-mediated transcriptional repression during ES cell differentiation (8). A JARID1A-NUP98 gene fusion is associated with myeloid leukemia (9). JARID1B, which interacts with many proteins including c-Myc and HDAC4, may play a role in cell fate decisions by blocking terminal differentiation (10-12). JARID1B is over-expressed in many breast cancers and may act by repressing multiple tumor suppressor genes including BRCA1 and HOXA5 (13,14). JARID1C has been found in a complex with HDAC1, HDAC2, G9a and REST, which binds to and represses REST target genes in non-neuronal cells (7). JARID1C mutations are associated with X-linked mental retardation and epilepsy (15,16). JARID1D is largely uncharacterized.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain of several proteins has been shown to catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into seven separate families (3). The JMJD1 (Jumonji domain-containing protein 1) family, also known as JHDM2 (JmjC domain-containing histone demethylation protein 2) family, contains four members: hairless (HR), JMJD1A/JHDM2A, JMJD1B/JHDM2B, and JMJD1C/JHDM2C. Hairless is expressed in the skin and brain and acts as a co-repressor of the thyroid hormone receptor (4-6). Mutations in the hairless gene cause alopecia in both mice and humans (4,5). JMJD1A is expressed in meiotic and post-meiotic male germ cells, contributes to androgen receptor-mediated gene regulation, and is required for spermatogenesis (7-9). It has also been identified as a downstream target of OCT4 and STAT3 and is critical for the regulation of self-renewal in embryonic stem cells (10,11). JMJD1B is a more widely expressed family member and is frequently deleted in myeloid leukemia (12). JMJD1C (also known as TRIP8) is a co-factor of both the androgen and thyroid receptors and has a potential link to autism (13-15). Members of the JMJD1/JHDM2 family have been shown to demethylate mono-methyl and di-methyl histone H3 (Lys9) (3,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The three members of the UTX/UTY family include the ubiquitously transcribed X chromosome tetratricopeptide repeat protein (UTX), the ubiquitously transcribed Y chromosome tetratricopeptide repeat protein (UTY) and JmjC domain-containing protein 3 (JMJD3) (3). This family of proteins has been shown to demethylate both di- and tri-methyl histone H3 Lys 27 (4-8). The UTX gene escapes X inactivation in females and is ubiquitously expressed (9). UTX functions to regulate HOX gene expression during development (4-6). JMJD3 functions to regulate gene expression in macrophages responding to various inflammatory stimuli and has been shown to be upregulated in prostate cancer (7,8). Both UTX and JMJD3 interact with mixed-lineage leukemia (MLL) complexes 2 and 3, both of which have been shown to methylate histone H3 at Lys4 (6,7). The UTY gene is expressed in most tissues in the male mouse (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The stress-activated protein kinase/Jun-amino-terminal kinase SAPK/JNK is potently and preferentially activated by a variety of environmental stresses including UV and gamma radiation, ceramides, inflammatory cytokines, and in some instances, growth factors and GPCR agonists (1-6). As with the other MAPKs, the core signaling unit is composed of a MAPKKK, typically MEKK1-MEKK4, or by one of the mixed lineage kinases (MLKs), which phosphorylate and activate MKK4/7. Upon activation, MKKs phosphorylate and activate the SAPK/JNK kinase (2). Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (3). Both Rac1 and cdc42 mediate the stimulation of MEKKs and MLKs (3). Alternatively, MKK4/7 can be activated in a GTPase-independent mechanism via stimulation of a germinal center kinase (GCK) family member (4). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (3). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (3,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: JunB is a basic region, leucine zipper (bZIP) transcription factor belonging to the Jun family that includes c-Jun and JunD. Jun family members homodimerize or heterodimerize with Fos and ATF proteins to form a functional transcription factor AP-1 (activator protein 1), whose activity is regulated by a variety of physiological and pathological stimuli such as growth factors, infections, and stress signals (1-4). While JunB sometimes antagonizes c-Jun transcriptional activity, it may functionally substitute for c-Jun during development in mice (5-7). JunB regulates hematopoietic stem cell number and plays an important role in the pathogenesis of chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: JunB is a basic region, leucine zipper (bZIP) transcription factor belonging to the Jun family that includes c-Jun and JunD. Jun family members homodimerize or heterodimerize with Fos and ATF proteins to form a functional transcription factor AP-1 (activator protein 1), whose activity is regulated by a variety of physiological and pathological stimuli such as growth factors, infections, and stress signals (1-4). While JunB sometimes antagonizes c-Jun transcriptional activity, it may functionally substitute for c-Jun during development in mice (5-7). JunB regulates hematopoietic stem cell number and plays an important role in the pathogenesis of chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) (8,9).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected, Human

Application Methods: Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: BTB/POZ domain-containing protein KCTD5 is a member of the potassium channel tetramerization domain family of proteins that play a role in transcriptional repression, cytoskeletal regulation, and ion channel gating (1). KCTD5 interacts with bound ubiquitin proteins and cullin3, and acts as a dependent E3 ligase substrate adaptor through interactions with its BTB domain (2). KCTD5 has been identified as a negative regulator of the AKT pathway by acting as an off switch for G-protein coupled receptor signaling by triggering proteolysis of Gβγ heterodimers dissociated from the Gα subunit (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The nuclear factor-like 2 (NRF2) transcriptional activator binds antioxidant response elements (ARE) of target gene promoter regions to regulate expression of oxidative stress response genes. Under basal conditions, the NRF2 inhibitor INrf2 (also called KEAP1) binds and retains NRF2 in the cytoplasm where it can be targeted for ubiquitin-mediated degradation (1). Small amounts of constitutive nuclear NRF2 maintain cellular homeostasis through regulation of basal expression of antioxidant response genes. Following oxidative or electrophilic stress, KEAP1 releases NRF2, thereby allowing the activator to translocate to the nucleus and bind to ARE-containing genes (2). The coordinated action of NRF2 and other transcription factors mediates the response to oxidative stress (3). Altered expression of NRF2 is associated with chronic obstructive pulmonary disease (COPD) (4). NRF2 activity in lung cancer cell lines directly correlates with cell proliferation rates, and inhibition of NRF2 expression by siRNA enhances anti-cancer drug-induced apoptosis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Keratins (cytokeratins) are intermediate filament proteins that are mainly expressed in epithelial cells. Keratin heterodimers composed of an acidic keratin (or type I keratin, keratins 9 to 23) and a basic keratin (or type II keratin, keratins 1 to 8) assemble to form filaments (1,2). Keratin isoforms demonstrate tissue- and differentiation-specific profiles that make them useful as research biomarkers (1). Research studies have shown that mutations in keratin genes are associated with skin disorders, liver and pancreatic diseases, and inflammatory intestinal diseases (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: KHSRP, also known as KSRP, is a KH domain-containing AU-rich element (ARE) binding protein (1). It recruits degradation machinery and activates mRNA turnover (2). This protein was previously shown to function as a regulator for splicing (3). KHSRP associates with both the Drosha and Dicer multiprotein complexes (4), and controls the biogenesis of some microRNAs by binding to the terminal loops of these microRNA precursors (3). KHSRP is found in neural and non-neural cell types in both the nucleus and the cytoplasm (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The Hippo pathway is an important evolutionarily conserved signaling pathway that controls organ size and tumor suppression by inhibiting cell proliferation and promoting apoptosis (1,2). An integral function of the Hippo pathway is to repress the activity of YAP (Yes-associated protein), a proposed oncogene whose activity is regulated by phosphorylation and subcellular localization (3,4). Recent studies have identified KIBRA as a novel regulator of Hippo signaling (5-7). KIBRA has been shown to regulate Hippo signaling through its interaction with tumor suppressors Merlin (Mer) and Expanded (Ex) in Drosophila (7) and by associating with large tumor suppressors LATS1 and LATS2 in humans (8). In humans, KIBRA is predominantly expressed in the kidney and brain (9) and has been shown to play a role in hippocampus-related memory performance (10-12). Recent studies have shown that phosphorylation of KIBRA is highest during mitosis and is controlled by aurora kinase and protein phosphatase 1 (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: The kindlin family of focal adhesion proteins is involved in multiple biological processes, including integrin signaling, adhesion, migration, angiogenesis, differentiation, and mitotic spindle formation (1,2). Kindlin family members 1, 2, and 3 (FERM1, FERM2, and URP2) are differentially expressed in tissues. Kindlin-1 is primarily expressed in epithelial cells, kindlin-2 is ubiquitously expressed, and kindlin-3 expression is restricted to the hematopoietic system (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: KLF4 is a member of the erythroid Kruppel-like factor (EKLF) multigene family that is highly expressed in the differentiating layers of the epidermis (1, 2). KLF4 plays a critical role in the differentiation of epithelial cells and is essential for normal gastric homeostasis (2,3). Depending on the target gene, KLF4 can function as both a repressor and activator of transcription (4). Research studies suggest this protein may function as either a tumor suppressor or an oncogene depending on tumor type, with up-regulation in human squamous cell carcinoma of the head and neck and down-regulation in colorectal carcinoma (5,6). The in vitro reprogramming of somatic cells to an embryonic-like state has been achieved by retroviral transduction of four factors: Oct-3/4, Sox2, c-Myc, and KLF4 (7). These induced pluripotent stem cells (iPS) are of great therapeutic interest as they exhibit the key characteristics and growth properties of pluripotent stem cells (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins and are divided into two subgroups: importin alpha and importin beta. Importins function mainly in the import and export of nuclear proteins (1,2). KPNA2 (karyopherin alpha 2), a member of the importin alpha family, contains an N-terminal importin beta binding (IBB) motif followed by a hydrophobic region consisting of 10 armadillo repeats that function in binding to the nuclear localization signal (NLS) sites of cargo proteins (3-5). A trimeric complex (importin beta/KPNA2/cargo protein) forms, translocates into the nucleus, and then dissociates upon binding of RanGTP to importin beta. The dissociated importin alpha is recycled back to the cytoplasm with the help of export factor CAS (6,7). KPNA2 can differentially regulate target localization by binding to different cargo proteins, either actively transporting them to the nucleus (such as oct3/4) or retaining them in the cytoplasm by formation of incompetent complexes (such as oct6/brn2) (8). Research studies indicate that KPNA2 promotes cell proliferation and tumorigenesis. Research studies have also shown that up-regulation of KPNA2 is associated with cancer progression. Therefore, it has become a focus of biomarker research (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: KSR1 (kinase supressor of Ras) was identified from a genetic screen in Drosophila and C. elegans as a component of the Ras signaling pathway (1). KSR1 has a putative carboxy-terminal kinase domain that lacks a key Lys residue for phospho-group transfer. Although reports indicate that ceramide and EGF activate KSR1 (2,3), other evidence demonstrates that KSR1 regulates Raf in a kinase-independent manner (4,5). It is now widely accepted that KSR1 functions as a scaffold that binds MEK1/2 and 14-3-3 protein constitutively and binds ERK1/2 in a Ras activation-dependent manner (1,5,6). HSP70/HSP90 and p50 Cdc37 associate with the KSR1 complex to ensure its stability (5). Multiple phosphorylation sites have been identified: Ser297 and Ser392 mediate 14-3-3 binding, and putative MAPK phosphorylation sites include Thr260, Thr274 and Ser443 (6). C-TAK1 (Cdc25C-associated kinase 1) binds and phosphorylates KSR1 at Ser392 in quiescent cells (7). In response to stimuli, Ser392 is dephosphorylated by PP2A, which leads to ERK1/2 association and allows the KSR1 complex to translocate from cytosol to membrane, where the MAPK pathway is activated (8). IMP, a Ras-responsive E3 ubiquitin ligase, is also involved in interaction with KSR1 and may regulate its localization and stability (9). Very high expression levels of KSR1 inhibit MAPK signaling, whereas physiological levels promote MAPK signaling, indicating that the scaffold protein can turn signaling "on" or "off" depending on the scaffold concentration (10).