20% off purchase of 3 or more products* | Learn More >>

Product listing: JMJD3 Antibody, UniProt ID O15054 #3457 to LAT1 Antibody, UniProt ID Q01650 #5347

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The three members of the UTX/UTY family include the ubiquitously transcribed X chromosome tetratricopeptide repeat protein (UTX), the ubiquitously transcribed Y chromosome tetratricopeptide repeat protein (UTY) and JmjC domain-containing protein 3 (JMJD3) (3). This family of proteins has been shown to demethylate both di- and tri-methyl histone H3 Lys 27 (4-8). The UTX gene escapes X inactivation in females and is ubiquitously expressed (9). UTX functions to regulate HOX gene expression during development (4-6). JMJD3 functions to regulate gene expression in macrophages responding to various inflammatory stimuli and has been shown to be upregulated in prostate cancer (7,8). Both UTX and JMJD3 interact with mixed-lineage leukemia (MLL) complexes 2 and 3, both of which have been shown to methylate histone H3 at Lys4 (6,7). The UTY gene is expressed in most tissues in the male mouse (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The stress-activated protein kinase/Jun-amino-terminal kinase SAPK/JNK is potently and preferentially activated by a variety of environmental stresses including UV and gamma radiation, ceramides, inflammatory cytokines, and in some instances, growth factors and GPCR agonists (1-6). As with the other MAPKs, the core signaling unit is composed of a MAPKKK, typically MEKK1-MEKK4, or by one of the mixed lineage kinases (MLKs), which phosphorylate and activate MKK4/7. Upon activation, MKKs phosphorylate and activate the SAPK/JNK kinase (2). Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (3). Both Rac1 and cdc42 mediate the stimulation of MEKKs and MLKs (3). Alternatively, MKK4/7 can be activated in a GTPase-independent mechanism via stimulation of a germinal center kinase (GCK) family member (4). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (3). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (3,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: JunB is a basic region, leucine zipper (bZIP) transcription factor belonging to the Jun family that includes c-Jun and JunD. Jun family members homodimerize or heterodimerize with Fos and ATF proteins to form a functional transcription factor AP-1 (activator protein 1), whose activity is regulated by a variety of physiological and pathological stimuli such as growth factors, infections, and stress signals (1-4). While JunB sometimes antagonizes c-Jun transcriptional activity, it may functionally substitute for c-Jun during development in mice (5-7). JunB regulates hematopoietic stem cell number and plays an important role in the pathogenesis of chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: JunB is a basic region, leucine zipper (bZIP) transcription factor belonging to the Jun family that includes c-Jun and JunD. Jun family members homodimerize or heterodimerize with Fos and ATF proteins to form a functional transcription factor AP-1 (activator protein 1), whose activity is regulated by a variety of physiological and pathological stimuli such as growth factors, infections, and stress signals (1-4). While JunB sometimes antagonizes c-Jun transcriptional activity, it may functionally substitute for c-Jun during development in mice (5-7). JunB regulates hematopoietic stem cell number and plays an important role in the pathogenesis of chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) (8,9).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected, Human

Application Methods: Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: BTB/POZ domain-containing protein KCTD5 is a member of the potassium channel tetramerization domain family of proteins that play a role in transcriptional repression, cytoskeletal regulation, and ion channel gating (1). KCTD5 interacts with bound ubiquitin proteins and cullin3, and acts as a dependent E3 ligase substrate adaptor through interactions with its BTB domain (2). KCTD5 has been identified as a negative regulator of the AKT pathway by acting as an off switch for G-protein coupled receptor signaling by triggering proteolysis of Gβγ heterodimers dissociated from the Gα subunit (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The nuclear factor-like 2 (NRF2) transcriptional activator binds antioxidant response elements (ARE) of target gene promoter regions to regulate expression of oxidative stress response genes. Under basal conditions, the NRF2 inhibitor INrf2 (also called KEAP1) binds and retains NRF2 in the cytoplasm where it can be targeted for ubiquitin-mediated degradation (1). Small amounts of constitutive nuclear NRF2 maintain cellular homeostasis through regulation of basal expression of antioxidant response genes. Following oxidative or electrophilic stress, KEAP1 releases NRF2, thereby allowing the activator to translocate to the nucleus and bind to ARE-containing genes (2). The coordinated action of NRF2 and other transcription factors mediates the response to oxidative stress (3). Altered expression of NRF2 is associated with chronic obstructive pulmonary disease (COPD) (4). NRF2 activity in lung cancer cell lines directly correlates with cell proliferation rates, and inhibition of NRF2 expression by siRNA enhances anti-cancer drug-induced apoptosis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Keratins (cytokeratins) are intermediate filament proteins that are mainly expressed in epithelial cells. Keratin heterodimers composed of an acidic keratin (or type I keratin, keratins 9 to 23) and a basic keratin (or type II keratin, keratins 1 to 8) assemble to form filaments (1,2). Keratin isoforms demonstrate tissue- and differentiation-specific profiles that make them useful as research biomarkers (1). Research studies have shown that mutations in keratin genes are associated with skin disorders, liver and pancreatic diseases, and inflammatory intestinal diseases (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: KHSRP, also known as KSRP, is a KH domain-containing AU-rich element (ARE) binding protein (1). It recruits degradation machinery and activates mRNA turnover (2). This protein was previously shown to function as a regulator for splicing (3). KHSRP associates with both the Drosha and Dicer multiprotein complexes (4), and controls the biogenesis of some microRNAs by binding to the terminal loops of these microRNA precursors (3). KHSRP is found in neural and non-neural cell types in both the nucleus and the cytoplasm (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The Hippo pathway is an important evolutionarily conserved signaling pathway that controls organ size and tumor suppression by inhibiting cell proliferation and promoting apoptosis (1,2). An integral function of the Hippo pathway is to repress the activity of YAP (Yes-associated protein), a proposed oncogene whose activity is regulated by phosphorylation and subcellular localization (3,4). Recent studies have identified KIBRA as a novel regulator of Hippo signaling (5-7). KIBRA has been shown to regulate Hippo signaling through its interaction with tumor suppressors Merlin (Mer) and Expanded (Ex) in Drosophila (7) and by associating with large tumor suppressors LATS1 and LATS2 in humans (8). In humans, KIBRA is predominantly expressed in the kidney and brain (9) and has been shown to play a role in hippocampus-related memory performance (10-12). Recent studies have shown that phosphorylation of KIBRA is highest during mitosis and is controlled by aurora kinase and protein phosphatase 1 (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: The kindlin family of focal adhesion proteins is involved in multiple biological processes, including integrin signaling, adhesion, migration, angiogenesis, differentiation, and mitotic spindle formation (1,2). Kindlin family members 1, 2, and 3 (FERM1, FERM2, and URP2) are differentially expressed in tissues. Kindlin-1 is primarily expressed in epithelial cells, kindlin-2 is ubiquitously expressed, and kindlin-3 expression is restricted to the hematopoietic system (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: KLF4 is a member of the erythroid Kruppel-like factor (EKLF) multigene family that is highly expressed in the differentiating layers of the epidermis (1, 2). KLF4 plays a critical role in the differentiation of epithelial cells and is essential for normal gastric homeostasis (2,3). Depending on the target gene, KLF4 can function as both a repressor and activator of transcription (4). Research studies suggest this protein may function as either a tumor suppressor or an oncogene depending on tumor type, with up-regulation in human squamous cell carcinoma of the head and neck and down-regulation in colorectal carcinoma (5,6). The in vitro reprogramming of somatic cells to an embryonic-like state has been achieved by retroviral transduction of four factors: Oct-3/4, Sox2, c-Myc, and KLF4 (7). These induced pluripotent stem cells (iPS) are of great therapeutic interest as they exhibit the key characteristics and growth properties of pluripotent stem cells (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins and are divided into two subgroups: importin alpha and importin beta. Importins function mainly in the import and export of nuclear proteins (1,2). KPNA2 (karyopherin alpha 2), a member of the importin alpha family, contains an N-terminal importin beta binding (IBB) motif followed by a hydrophobic region consisting of 10 armadillo repeats that function in binding to the nuclear localization signal (NLS) sites of cargo proteins (3-5). A trimeric complex (importin beta/KPNA2/cargo protein) forms, translocates into the nucleus, and then dissociates upon binding of RanGTP to importin beta. The dissociated importin alpha is recycled back to the cytoplasm with the help of export factor CAS (6,7). KPNA2 can differentially regulate target localization by binding to different cargo proteins, either actively transporting them to the nucleus (such as oct3/4) or retaining them in the cytoplasm by formation of incompetent complexes (such as oct6/brn2) (8). Research studies indicate that KPNA2 promotes cell proliferation and tumorigenesis. Research studies have also shown that up-regulation of KPNA2 is associated with cancer progression. Therefore, it has become a focus of biomarker research (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: KSR1 (kinase supressor of Ras) was identified from a genetic screen in Drosophila and C. elegans as a component of the Ras signaling pathway (1). KSR1 has a putative carboxy-terminal kinase domain that lacks a key Lys residue for phospho-group transfer. Although reports indicate that ceramide and EGF activate KSR1 (2,3), other evidence demonstrates that KSR1 regulates Raf in a kinase-independent manner (4,5). It is now widely accepted that KSR1 functions as a scaffold that binds MEK1/2 and 14-3-3 protein constitutively and binds ERK1/2 in a Ras activation-dependent manner (1,5,6). HSP70/HSP90 and p50 Cdc37 associate with the KSR1 complex to ensure its stability (5). Multiple phosphorylation sites have been identified: Ser297 and Ser392 mediate 14-3-3 binding, and putative MAPK phosphorylation sites include Thr260, Thr274 and Ser443 (6). C-TAK1 (Cdc25C-associated kinase 1) binds and phosphorylates KSR1 at Ser392 in quiescent cells (7). In response to stimuli, Ser392 is dephosphorylated by PP2A, which leads to ERK1/2 association and allows the KSR1 complex to translocate from cytosol to membrane, where the MAPK pathway is activated (8). IMP, a Ras-responsive E3 ubiquitin ligase, is also involved in interaction with KSR1 and may regulate its localization and stability (9). Very high expression levels of KSR1 inhibit MAPK signaling, whereas physiological levels promote MAPK signaling, indicating that the scaffold protein can turn signaling "on" or "off" depending on the scaffold concentration (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ku is a heterodimeric protein composed of two subunits (Ku70 and Ku80) originally identified by researchers as autoantigens associated with several autoimmune diseases including scleroderma, polymyositis, and systemic lupus erythematosus (1). Ku is an abundant, ubiquitously expressed nuclear protein that binds to and stabilizes the ends of DNA at telomeres or double-stranded DNA breaks (2-5). The Ku70/Ku80 heterodimer has ATP-dependent DNA helicase activity and functions as the DNA-binding regulatory component of DNA-dependent protein kinase (DNA-PK) (6-8). The assembly of the DNA-PK complex at DNA ends is required for nonhomologous end-joining (NHEJ), one mechanism involved in double-stranded DNA break repair and V(D)J recombination (8). DNA-PK has been shown to phosphorylate many proteins, including p53, serum response factor, c-Jun, c-Fos, c-Myc, Oct-1, Sp-1, and RNA polymerase II (1,8). The combined activities of Ku70/Ku80 and DNA-PK implicate Ku in many cellular functions, including cell cycle regulation, DNA replication and repair, telomere maintenance, recombination, and transcriptional activation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ku is a heterodimeric protein composed of two subunits (Ku70 and Ku80) originally identified by researchers as autoantigens associated with several autoimmune diseases including scleroderma, polymyositis, and systemic lupus erythematosus (1). Ku is an abundant, ubiquitously expressed nuclear protein that binds to and stabilizes the ends of DNA at telomeres or double-stranded DNA breaks (2-5). The Ku70/Ku80 heterodimer has ATP-dependent DNA helicase activity and functions as the DNA-binding regulatory component of DNA-dependent protein kinase (DNA-PK) (6-8). The assembly of the DNA-PK complex at DNA ends is required for nonhomologous end-joining (NHEJ), one mechanism involved in double-stranded DNA break repair and V(D)J recombination (8). DNA-PK has been shown to phosphorylate many proteins, including p53, serum response factor, c-Jun, c-Fos, c-Myc, Oct-1, Sp-1, and RNA polymerase II (1,8). The combined activities of Ku70/Ku80 and DNA-PK implicate Ku in many cellular functions, including cell cycle regulation, DNA replication and repair, telomere maintenance, recombination, and transcriptional activation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Ku is a heterodimeric protein composed of two subunits (Ku70 and Ku80) originally identified by researchers as autoantigens associated with several autoimmune diseases including scleroderma, polymyositis, and systemic lupus erythematosus (1). Ku is an abundant, ubiquitously expressed nuclear protein that binds to and stabilizes the ends of DNA at telomeres or double-stranded DNA breaks (2-5). The Ku70/Ku80 heterodimer has ATP-dependent DNA helicase activity and functions as the DNA-binding regulatory component of DNA-dependent protein kinase (DNA-PK) (6-8). The assembly of the DNA-PK complex at DNA ends is required for nonhomologous end-joining (NHEJ), one mechanism involved in double-stranded DNA break repair and V(D)J recombination (8). DNA-PK has been shown to phosphorylate many proteins, including p53, serum response factor, c-Jun, c-Fos, c-Myc, Oct-1, Sp-1, and RNA polymerase II (1,8). The combined activities of Ku70/Ku80 and DNA-PK implicate Ku in many cellular functions, including cell cycle regulation, DNA replication and repair, telomere maintenance, recombination, and transcriptional activation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: L-asparaginase (ASRGL1) catalyzes the conversion of L-asparagine to L-aspartate. Research studies have shown that intracellular asparagine can suppress apoptosis in a large number of human tumors (1). In addition, acute lymphocytic leukemia cells frequently depend upon serum asparagine for their viability, as they lack asparagine synthetase (ASNS). Deprivation of asparagine by L-asparaginase has therefore been developed as a therapeutic treatment for acute lymphocytic leukemia (2-3). In KRAS mutant non-small cell lung carcinoma (NSCLC) cells, PI3K/Akt signaling was shown to be required for ASNS expression, suggesting combinatorial Akt inhibition and L-asparaginase treatment as a therapeutic strategy for NSCLC (3). Research studies on a breast cancer model have furthermore shown that restriction of asparagine can suppress cancer metastasis (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: La antigen is recognized by antibodies in patients with autoimmune disorders such as systemic lupus erythematosus and Sjögren's syndrome (1). La antigen binds to the 5'-noncoding region of poliovirus RNA and is an IRES trans-acting factor (1,2). Depletion of La antigen reduces the function of poliovirus IRES in vivo (3). La antigen, when phosphorylated at Ser366, has been shown to associate with nuclear precursor tRNAs and facilitate their processing (4). The nonphosphorylated La antigen interacts with the mRNAs that have 5'-terminal oligopyrimidine (5'TOP) motifs to control protein synthesis (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: LACTB is a serine beta-lactamase-like protein that is most prominently expressed in skeletal muscle, heart and liver (1). It contains an amino-terminal transmembrane domain and is localized to the mitochondrial intermembrane space, where it is polymerized into stable filaments that promote intramitochondrial membrane organization and micro-compartmentalization (2). Studies in multiple breast cancer cell types have shown that LACTB can function as a tumor suppressor by promoting decreased levels of phosphatidylserine decarboxylase (PISD), leading to reduced cell proliferation (3). In accordance with this, levels of LACTB have been shown to be downregulated in hepatocellular carcinoma and colorectal cancer and associated with poor prognosis in both (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: LAIR-1 is an inhibitory receptor that belongs to the Immunoglobulin superfamily. It has one extracellular Ig-like domain and an intracellular C-terminus with two ITIM (immunoreceptor tyrosine-based inhibitory motif) domains. It is found on peripheral mononuclear cells, including NK, T, and B cells, and is thought to play a negative regulatory role on the cytolytic function of these cells through signaling through collagen ligation (1). LAIR1 has been noted to be upregulated in renal cell carcinoma (2), and may play a role in expansion of Th17 cell populations in collagen-rich environments, such as in graft rejection tissue (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Laminins are a family of proteins important for maintaining cellular basement membrane (BM) structure and function (1). Laminins exist as heterotrimers of alpha (LAMA), beta (LAMB), and gamma (LAMC) chains. LAMC1 (laminin gamma-1) is a ubiquitously expressed gamma chain, and has three distinct functional domain structures. The N-terminal LN domain binds to specific alpha and beta chains to form a unique laminin heterotrimer. The LE domain mediates interactions with nidogens, while the C-terminal coil-coil fragment is necessary for agrin association. Collectively, these interactions are critical for stabilization and function of the BM (1). Genetic ablation of LAMC1 has demonstrated a critical role for this protein in embryo implantation, lung and kidney development, and neuronal Schwann cell myelination and regeneration, in addition to Trypanosome infection (2-5). Upregulation of LAMC1 has also been associated with tumor progression in multiple tumor types (6-9), possibly by creating a BM environment that is favorable for cancer cell metastasis and invasion.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Lamins are nuclear membrane structural components that are important in maintaining normal cell functions such as cell cycle control, DNA replication, and chromatin organization (1-3). Lamin A/C is cleaved by caspase-6 and serves as a marker for caspase-6 activation. During apoptosis, lamin A/C is specifically cleaved into a large (41-50 kDa) and a small (28 kDa) fragment (3,4). The cleavage of lamins results in nuclear dysregulation and cell death (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: La-related protein 1 (LARP1) is a ubiquitously expressed RNA binding protein that promotes both global and specific mRNA translation in cells (1). LARP1 belongs to the La-related protein family and contains two RNA binding domains, a La motif (LAM), and a neighboring RNA recognition motif-like (RRM-L) domain (1). Research studies indicate that LARP1 acts downstream of mTORC1 to facilitate cell proliferation and growth by promoting global mRNA translation and translation of mRNAs containing a 5'Terminal Oligo-Pyrimidine (5'TOP) motif, which code for translational machinery components (2,3). At the molecular level, LARP1 associates with 5'TOP mRNAs and multiple translation machinery components to positively regulate translation (2,4). Additional studies show that LARP1 expression is upregulated in hepatocellular carcinoma (HCC) patients and that high LARP1 expression in HCC negatively correlates with survival rate (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Leucyl-tRNA Synthetase (LARS) is a leucine sensor critical for the activation of mTORC1 (1). mTORC1 kinase complex is an important component in the regulation of cell growth (2,3). Its activity is modulated by energy levels, growth factors, and amino acids (4,5). The four related GTPases, RagA, RagB, RagC, and RagD, have been shown to interact with raptor in mTORC1 (2,3). These interactions are both necessary and sufficient for mTORC1 activation in response to amino acid signals (2,3). LARS functions as a GTPase-activating protein (GAP) and interacts directly with RagD GTPase (1). The role of LARS in leucine sensing is not related to its tRNA charging activity (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: LASP1 is a cytoskeletal scaffold protein belonging to the LIM protein subfamily (1,2). LASP1 consists of an N-terminal LIM domain, followed by two nebulin repeats, and a C-terminal SH3 domain (1,3). The nebulin repeats interact with actin, while the SH3 domain interacts with palladin (4,5), suggesting LASP1 functions as an actin-binding protein, possibly in cytoskeletal organization. LASP1 has been shown to localize to focal adhesions, lamellipodia, and membrane ruffles (6-8) and might be involved in membrane migration. Overexpression of LASP1 has been associated with metastatic cancers, such as breast and ovarian cancer (2). In these cases, membrane, cytoplasmic, and nuclear localization of LASP1 in the tumor cell has been reported, suggesting LASP1 involvement in membrane and nuclear signaling (9,10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: LAT, a transmembrane adaptor protein expressed in T, NK and mast cells, is an important mediator for T cell receptor (TCR) signaling (1). Upon TCR engagement, activated Zap-70 phosphorylates LAT at multiple conserved tyrosine residues within SH2 binding motifs, exposing these motifs as the docking sites for downstream signaling targets (2,3). The phosphorylation of LAT at Tyr171 and Tyr191 enables the binding of Grb2, Gads/SLP-76, PLCγ1 and PI3 kinase through their SH2 domain and translocates them to the membrane. This process eventually leads to activation of the corresponding signaling pathways (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: L-type amino acid transporter 1 (LAT1), also known as Solute carrier family 7 member 5 (SLC7A5), is a high-affinity neutral transporter of larger amino acids. It facilitates the cellular amino acid uptake in a sodium independent manner (1-2) and selectively transports D-and L-isomers of small neutral amino acids (3). LAT1 also regulates amino acid exchange in conjunction with solute carrier family 1 member 5 (SLC1A5) (2,4-6). Transport of thyroid hormones across the placenta is established via LAT1 during normal fetal development (7). LAT1 promotes neuronal cell proliferation by regulating the transport of amino acids across the blood brain barrier (8). LAT1 is upregulated in various cancer types including breast cancer, lung cancer, prostate cancer, and gliomas (9,10). High expression of LAT1 is detected in non-small cell lung cancer with lymph node metastases(9,11,12). Increased LAT1 expression is a novel biomarker of high grade malignancy in prostate cancers (12). Inhibition of LAT1 suppresses tumor cell growth in several tumor types (10,13).