Microsize antibodies for $99 | Learn More >>

Product listing: RANTES Antibody (Rodent Specific), UniProt ID P13501 #2989 to Rictor Antibody, UniProt ID Q6R327 #2140

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: RANTES/CCL5 (regulated upon activation, T cell expressed and secreted) is a member of the "C-C" or β family of chemokines that induce inflammation and are associated with a number of inflammatory disorders (1,2). RANTES is produced and secreted mainly by CD8+ T cells, macrophages, and platelets, as well as epithelial cells, fibroblasts and some solid tumors (2-7). RANTES acts as a chemoattractant and has other regulatory functions on a number of cell types including monocytes, memory T cells, NK cells, eosinophils, basophils, dendritic cells, and mast cells (3, 7-9). Signaling by RANTES is mediated by several G-protein coupled receptors (GPCRs), including CCR1, CCR3, CCR4 and CCR5.

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rap1 and Rap2 belong to the Ras subfamily of small GTPases and are activated by a wide variety of stimuli through integrins, receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCR), death domain associated receptors (DD-R) and ion channels (1,2). Like other small GTPases, Rap activity is stimulated by guanine nucleotide exchange factors (GEF) and inactivated by GTPase activating proteins (GAP). A wide variety of Rap GEFs have been identified: C3G connects Rap1 with RTKs through adaptor proteins such as Crk, Epacs (or cAMP-GEFs) transmit signals from cAMP, and CD-GEFs (or CalDAG-GEFs) convey signals from either or both Ca2+ and DAG (1). Rap1 primarily regulates multiple integrin-dependent processes such as morphogenesis, cell-cell adhesion, hematopoiesis, leukocyte migration and tumor invasion (1,2). Rap1 may also regulate proliferation, differentiation and survival through downstream effectors including B-Raf, PI3K, RalGEF and phospholipases (PLCs) (1-4). Rap1 and Rap2 are not fuctionally redundant as they perform overlapping but distinct functions (5). Recent research indicates that Rap2 regulates Dsh subcellular localization and is required for Wnt signaling in early development (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Retinoids (vitamin A and its active retinoic acid derivatives) are non-steroid hormones that regulate cell proliferation, differentiation and apoptosis. Retinoic acid receptors (RARalpha, -beta and -gamma) and retinoid X receptors (RXRalpha, -beta and -gamma) are nuclear receptors that function as RAR-RXR heterodimers or RXR homodimers (1-2). In response to retinoid binding, these dimers control gene expression by binding to specific retinoic acid response elements, by recruiting cofactors and the transcriptional machinery, and by indirectly regulating chromatin structure. Finally, ligand binding and phosphorylation of RARalpha by JNK at Thr181, Ser445 and Ser461 controls the stability of RAR-RXR through the ubiquitin-proteasome pathway (3-4). At least four distinct genetic lesions affect RARalpha and result in acute promyelocytic leukemia (APL). The t(15;17) translocation that results in the PML-RARalpha fusion protein is responsible for more than 99% of APL cases, and the fusion protein inhibits PML-dependent apoptotic pathways in a dominant negative fashion. In addition PML-RARalpha inhibits transcription of retinoic acid target genes by recruiting co-repressors, attenuating myeloid differentiation (5-6).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Pig, Rat, S. cerevisiae

Application Methods: Western Blotting

Background: The 21 kDa guanine-nucleotide binding proteins (K-Ras, H-Ras, and N-Ras) cycle between active (GTP-bound) and inactive (GDP-bound) forms (1). Receptor tyrosine kinases and G protein-coupled receptors activate Ras, which then stimulates the Raf-MEK-MAPK pathway (2-4). GTPase-activating proteins (GAP) normally facilitate the inactivation of Ras. However, research studies have shown that in 30% of human tumors, point mutations in Ras prevent the GAP-mediated inhibition of this pathway (5). The most common oncogenic Ras mutation found in tumors is Gly12 to Asp12 (G12D), which prevents Ras inactivation, possibly by increasing the overall rigidity of the protein (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Ras activity is regulated by GAP (GTPase activating proteins) and GEFs (guanine nucleotide exchange factors). Ras-GRF1 (also known as CDC25Mm) is neuronal RasGEF and is regulated by heterotrimeric G proteins and calcium influx (1,2). Binding to calmodulin and phosphorylation stimulate Ras-GRF1 activity (1,2). Multiple PKA phosphorylation sites on Ras-GRF have been identified. Phosphorylation on the two major sites, Ser54 and Ser822, inhibits Ras-GRF activity (3). Carbachol (a muscarinic agonist)-induced phosphorylation on Ser916 is essential but not sufficient for maximal Ras-GRF activity (4). It has been reported that Ras-GRF1 also shows GEF activity toward Rac after phosphorylation by the tyrosine kinase Src (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Retinoblastoma-associated proteins 46 and 48 (RBAP46 and RBAP48; also known as RBBP7 and RBBP4) were first characterized in human cells as proteins that bind to the retinoblastoma (Rb) tumor suppressor protein (1). Since then, these proteins have been shown to be components of many protein complexes involved in chromatin regulation, including the chromatin assembly factor 1 (CAF-1) complex and type B histone acetyltransferase complex HAT1, both of which function in chromatin assembly during DNA replication (2,3). RBAP46 and RBAP48 are also found in the nucleosome remodeling factor complex NURF, the nucleosome remodeling and histone de-acetylation complex NuRD, and the Sin3/HDAC histone de-acetylation complex (4-7). More recently, RBAP46 and RBAP48 were identified as components of the polycomb repressor complex PRC2, which also contains EED and Ezh2 (8). RBAP46 and RBAP48 bind to the histone fold region of histone H4 and are believed to target these chromatin remodeling, histone acetylation, and histone de-acetylation complexes to their histone substrates (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Retinoblastoma-associated proteins 46 and 48 (RBAP46 and RBAP48; also known as RBBP7 and RBBP4) were first characterized in human cells as proteins that bind to the retinoblastoma (Rb) tumor suppressor protein (1). Since then, these proteins have been shown to be components of many protein complexes involved in chromatin regulation, including the chromatin assembly factor 1 (CAF-1) complex and type B histone acetyltransferase complex HAT1, both of which function in chromatin assembly during DNA replication (2,3). RBAP46 and RBAP48 are also found in the nucleosome remodeling factor complex NURF, the nucleosome remodeling and histone de-acetylation complex NuRD, and the Sin3/HDAC histone de-acetylation complex (4-7). More recently, RBAP46 and RBAP48 were identified as components of the polycomb repressor complex PRC2, which also contains EED and Ezh2 (8). RBAP46 and RBAP48 bind to the histone fold region of histone H4 and are believed to target these chromatin remodeling, histone acetylation, and histone de-acetylation complexes to their histone substrates (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Retinoblastoma-associated proteins 46 and 48 (RBAP46 and RBAP48; also known as RBBP7 and RBBP4) were first characterized in human cells as proteins that bind to the retinoblastoma (Rb) tumor suppressor protein (1). Since then, these proteins have been shown to be components of many protein complexes involved in chromatin regulation, including the chromatin assembly factor 1 (CAF-1) complex and type B histone acetyltransferase complex HAT1, both of which function in chromatin assembly during DNA replication (2,3). RBAP46 and RBAP48 are also found in the nucleosome remodeling factor complex NURF, the nucleosome remodeling and histone de-acetylation complex NuRD, and the Sin3/HDAC histone de-acetylation complex (4-7). More recently, RBAP46 and RBAP48 were identified as components of the polycomb repressor complex PRC2, which also contains EED and Ezh2 (8). RBAP46 and RBAP48 bind to the histone fold region of histone H4 and are believed to target these chromatin remodeling, histone acetylation, and histone de-acetylation complexes to their histone substrates (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: RBM10 is an RNA binding protein and a paralog to tumor suppressor RBM5 (1,2). Alternative splicing creates two highly expressed variants that differ by one exon. RBM10 controls alternative splicing and exon skipping of mRNAs, including Fas and Bcl-x (3,4). RBM10 has been shown to affect apoptosis via up regulation of TNF-α mRNA (5). In lung cancer, RBM10 mutations disrupt the splicing of NUMB, a regulator of Notch signaling (6,7). Fusion of the RBM10 gene with TFE3 has been found in renal cell carcinoma (8-9). Mutations of RBM10 causes TARP syndrome, an x-linked, lethal disorder characterized by various developmental defects (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: RBM15 is an RNA binding protein that is part of the WTAP-METTL3 m6A methyltransferase complex. RBM15 and related RBM15B interact with WTAP to recruit the complex to target mRNAs, and are critical to XIST-mediated gene silencing (1). RBM15 can recruit splicing factors such as SF3B1 to mRNA to promote alternative splicing. Expression levels of RBM15 can be regulated by PRMT1, which can methylate R578, resulting in RBM15 ubiquitinylation and degradation (2). This process is critical in acute megakaryoblastic leukemia, a cancer type where RBM15 is fused to the MKL-1 gene and PRMT1 is overexpressed (3). RBM15 normally plays roles in hematopoietic development and myeloid differentiation, where it can regulate the levels of c-Myc (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: RBPSUH (Recombining Binding Protein, SUppressor of Hairless), also termed RBP-J or CSL, is the DNA-binding component of the transcription complex regulated by canonical Notch signaling. In the absence of Notch activation, RBPSUH suppresses target gene expression through interactions with a co-repressor complex containing histone deacetylase. Upon activation of Notch receptors, the Notch intracellular domain (NICD) translocates to the nucleus and binds to RBPSUH. This displaces the co-repressor complex and replaces it with a transcription activation complex that includes Mastermind-like (MAML) proteins and histone acetylase p300, leading to transcriptional activation of Notch target genes (1-3). RBPSUH is also the DNA-binding partner for Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2), a protein critical for latent viral transcription and immortalization of EBV-infected B cells (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: RING-box protein 1 (RBX1 or ROC1) is an essential component of two distinct but structurally related E3 ubiquitin ligase complexes, the SCF complex and the CBC (VHL) complex (1). RBX1 mediates the neddylation of CUL1, which activates SCF E3 ligase by facilitating the ubiquitin transfer from E2 to substrates (2-4). The RING finger domain of RBX1 is required for ubiquitin ligation (5). Two evolutionarily conserved mammalian RBX family members, RBX1/ROC1 and RBX2/ROC2/SAG, have been identified (5). RBX1 is constitutively expressed and binds to CUL2/VHL, while stress-inducible RBX2 binds to CUL5/SOCS (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Ras family small GTPase Ran is involved in nuclear envelope formation, assembly of the mitotic spindle, and nuclear transport (1,2). Like other small GTPases, Ran is active in its GTP-bound form and inactive in its GDP-bound form. Nuclear RanGTP concentration is maintained through nuclear localization of guanine nucleotide exchange factor (GEF) activity, which catalyzes the exchange of bound GDP for GTP. Regulator of chromatin condensation 1 (RCC1) is the only known RanGEF (3). RCC1 is dynamically chromatin-bound throughout the cell cycle, and this localization is required for mitosis to proceed normally (4,5). Appropriate association of RCC1 with chromatin is regulated through amino-terminal phosphorylation (5,6) and methylation (7). RCC1 regulation of RanGTP levels in response to histone modifications regulates nuclear import during apoptosis (8). In mitosis RCC1 is phosphorylated at Ser11, possibly by cyclin B/cdc2 (9-11). This phosphorylation may play a role in RCC1 interaction with chromatin and RCC1 RanGEF activity (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: RCC2/TD-60 is a member of the RCC1 (regulator of chromosome condensation 1) family of guanine nucleotide exchange factors. RCC2/TD-60 is associated with the chromosome passenger complex (CPC), which also consists of aurora B kinase, borealin, INCENP (inner centromere protein) and survivin. The CPC acts at various stages of mitosis, interacts with microtubules and is required for proper chromosome segregation and cytokinesis. Regulation of aurora B kinase is key in the regulation of the CPC (reviewed in 1,2). In late mitosis, RCC2/TD-60 is required for spindle assembly and recruitment of survivin and aurora B (3). RCC2/TD-60 is also required for aurora B activation in vitro and localization of the CPC to centromeres (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: RING finger and CHY1 zinc finger domain-containing protein 1 (RCHY1) is a newly identified RING-H2-type protein-ubiquitin E3 ligase that is expressed as multiple isoforms generated through alternative splicing of mRNA transcripts (1,2). Notably, RCHY1 is a p53-regulated gene and multiple studies have shown that RCHY1 directly binds p53 to promote its ubiquitin-dependent proteasomal degradation, ultimately leading to repression of p53 growth suppressive transcriptional activity (1,3). RCHY1 is also likely to promote deregulated cell proliferation by targeting the CDK inhibitor, p27 Kip1, for proteasomal degradation (4). In agreement with its growth promoting activity, RCHY1 overexpression has been linked to cancer of the lung (5,6) and prostate (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: RECQL4 is a member of the RecQ family of DNA helicases that plays an important role in global genomic stability. There are five members of this family in humans, and mutations in three of these, BLM, WRN and RECQL4, give rise to disorders that are characterized by premature aging and a predisposition to cancer (1). Despite the presence of a helicase domain, no helicase activity has been reported for RECQL4. Rather, RECQL4 has an ATPase function that is stimulated by ssDNA, and a ssDNA annealing activity that is inhibited by RPA (2). RECQL4 has been reported to interact with ubiquitin ligases UBR1 and UBR2 (3). The role of RECQL4 in tumor suppression and the maintenance of genomic integrity has been attributed to it’s activities associated with the regulation of DNA replication, and DNA recombination and repair (4-6).Mutations in the RECQL4 gene have been identified in a subset of patients with Rothmund-Thomson syndrome (RTS) - a disorder characterized by growth deficiency, skin and skeletal abnormalities, and cancer predisposition. Two more autosomal recessive disorders have been associated with RECQL4 gene mutations: RAPADILINO, and Baller-Gerold syndromes (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: REDD1 (REgulated in Development and DNA damage responses) expression is induced by hypoxia, cell stress, apoptosis and DNA damage. REDD1 is a transcriptional target of p53 and p63 following DNA damage, and links p63 to Ros (1). REDD1 functions as a negative regulator of mTOR in response to hypoxia in a tuberin-dependent manner (2). Depending on cell context, REDD1 can either be protecting or detrimental for cells under oxidative or ischemic stresses (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Reg4 (regenerating islet-derived protein 4) is a member of a multigene family of Reg proteins (1). Reg proteins are secreted glycoproteins belonging to the calcium (C-type) dependent lectin superfamily, although they can in fact bind polysaccharides, mannan, and heparin in the absence of calcium (2,3). Reg4 is expressed in the gastrointestinal (GI) tract, in normal colon mucosa, and is up-regulated in colon adenocarcinoma, pancreatic cancer, gastric adenocarcinoma, inflammatory bowel disease (Crohn’s disease and ulcerative colitis) (4,5).It has recently been shown that Reg4 marks a population of deep secretory cells at the bottom of the crypts in the colon. In the upper gastrointestinal tract, Paneth cells support the Lgr5+ positive stem cells that reside at the base of deep crypts by providing signals such as Wnt3, EGF, and Notch ligands for stem cell maintenance. No Paneth cells however exist in the colon crypts. It is proposed that the Reg4+ population serves as an analogous support system for the LGR5+ positive stem cell population in the colon (1,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Renin is a secreted proteinase whose enzymatic activity is to convert angiotensinogen into angiotensin I in the plasma, initiating a process that results in an elevation of blood pressure and increased sodium retention by the kidney (1). Renin is synthezed in kidney as a procursor, prorenin, which is released into circulation. Both renin and prorenin can bind to (pro)renin receptor and induce angiotensin-independent signaling events leading to activation of MAPKs and up-regulation of TGF-β1 and matrix proteins (2, 3). Defects in renin can cause renal tubular dysgenesis, a severe autosomal recessive disorder of renal tubular development (4, 5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Reptin/RuvBL2 and Pontin/RuvBL1 are closely related members of the AAA+ (ATPase associated with diverse cellular activities) superfamily of proteins, and are putatively homologous to bacterial RuvB proteins that drive branch migration of Holliday junctions (1). Reptin and Pontin function together as essential components of chromatin remodeling and modification complexes, such as INO80, TIP60, SRCAP, and Uri1, which play key roles in regulating gene transcription (1,2). In their capacity as essential transcriptional co-regulators, Reptin and Pontin have both been implicated in oncogenic transformations, including those driven by c-Myc, β-catenin, and E1A (2-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Receptor for Hyaluronic acid-Mediated Motility (RHAMM, known also as CD168 or HMMR) was first identified as a putative receptor for hyaluronic acid (HA) that modulated HA-mediated cell motility (1). RHAMM/CD168 is functionally similar to the HA receptor CD44; however in contrast to CD44, RHAMM/CD168 does not contain a transmembrane domain or a signal peptide leader sequence, and so is not targeted exclusively to the cell membrane (1). RHAMM/CD168 has multiple isoforms; some are reportedly exported to the cell membrane in response to signaling by growth factors and cytokines (e.g., TGF-β) (2, 3), whereas others have been implicated in intracellular functions including mitotic spindle regulation (4). Cell surface RHAMM/CD168 is localized to membrane ruffles, consistent with proteins that regulate cell motility (1). Numerous research studies have reported that the expression of RHAMM/CD168 is positively associated with cancer cell growth, motility and/or metastasis (5-7), in addition to HA-mediated inflammation (8), suggesting the potential for therapeutic approaches that target HA-receptor mediated signaling (9,10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI) (1). RhoA, RhoB and RhoC are highly homologous, but appear to have divergent biological functions. Carboxy-terminal modifications and differences in subcellular localization allow these three proteins to respond to and act on distinct signaling molecules (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI). RhoGDI affects Rho activity by inhibiting nucleotide exchange and membrane association, regulating activity and localization (Reviewed in 1, 2). The inhibitory and shuttling functions of RhoGDI have been uncoupled using mutant forms of RhoGDI (3). Phosphorylation of GDIs and/or GTPases can modulate their affinity for each other and, therefore, GTPase mediated signaling. PAK1 phosphorylation of RhoGDI at serines 101 and 174 causes release and activation of Rac1, but not RhoA (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ribosomal protein L13a (RPL13a, 60S ribosomal protein L13a) is a member of the L13 ribosomal protein family and a structural component of the 60S ribosomal subunit (1). RPL13a appears to play an important role in transcript-specific translational silencing. Interferon-γ induces the phosphorylation of RPL13a and triggers the release of this protein from the 60S ribosomal subunit (2). Free RPL13a protein binds to the GAIT (interferon-γ-activated inhibitor of translation) complex at the 3'-UTR of ceruloplasmin (Cp) mRNA to repress Cp expression (2). RPL13a bound to the GAIT complex interacts with eIF4G, which prevents the recruitment of 43S ribosomal subunit and results in transcript-specific translation suppression (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L26 (RPL26) is a component of the 60S ribosomal subunit and is involved in translation (1,2). It was shown that RPL26 increases the translation of p53 mRNA by binding to its 5' untranslated region (UTR) after DNA damage. Studies found that overexpression of RPL26 enhances the binding of p53 mRNA to the ribosomes and increases p53 translation. Overexpression of RPL26 also induces cell-cycle arrest at G1 phase and increases radiation-stimulated apoptosis (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ribosomal protein L7a is a highly conserved ribosome protein localized to 60S ribosomal subunit (1). The protein has distinct domains that target the newly synthesized polypeptide to nucleus and the nucleoli, the site of ribosome biosynthesis (2). Ribosomal protein L7a can also interact with RNA in vitro through two distinct RNA-binding domains in the protein (3). Taken together, nucleolar localization and the ability to bind RNA suggests that ribosomal protein L7a may act as an important component for ribosome biosynthesis and function.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cell growth is a fundamental biological process whereby cells accumulate mass and increase in size. The mammalian TOR (mTOR) pathway regulates growth by coordinating energy and nutrient signals with growth factor-derived signals (1). mTOR is a large protein kinase with two different complexes. One complex contains mTOR, GβL and raptor, which is a target of rapamycin. The other complex, insensitive to rapamycin, includes mTOR, GβL, Sin1, and rictor (1). The mTOR-rictor complex phosphorylates Ser473 of Akt/PKB in vitro (2). This phosphorylation is essential for full Akt/PKB activation. Furthermore, an siRNA knockdown of rictor inhibits Ser473 phosphorylation in 3T3-L1 adipocytes (3). This complex has also been shown to phosphorylate the rapamycin-resistant mutants of S6K1, another effector of mTOR (4).